MONITORED NATURAL RECOVERY EVALUATION OF COTTONWOOD BAY SEDIMENTS

Presented by:
Kristin Searcy Bell, Phyllis Fuchsman, Lauren Brown, Victor Magar (Ramboll), and Charles Epperson (DGIC)
COTTONWOOD BAY/MOUNTAIN CREEK LAKE – DALLAS, TX

- 2,700 acre public reservoir
- Former US Navy facilities located on the NW shore
- Developer purchased the land and environmental liability from the Navy
BACKGROUND

• 2011 TCEQ Corrective Action Order to the Navy to address contaminated sediment
• Dredge sediment exceeding Protective Concentration Levels (PCLs)
• 2013–14 sediment sampling demonstrated decreasing surface sediment concentrations
• Is monitored natural recovery an appropriate and cost-effective remedy for the site?
MONITORED NATURAL RECOVERY (MNR)

MNR is a sediment response action that leaves contaminated sediments in place and relies on ongoing natural processes to reduce risks.

- Burial and reduced contaminant exposure
- Contaminant transformation/degradation
- Sorption/precipitation and reduced mobility/bioavailability
- Contaminant dispersion
<table>
<thead>
<tr>
<th></th>
<th>MNR LINES OF EVIDENCE FOR COTTONWOOD BAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Ecological and human health risks</td>
</tr>
<tr>
<td>02</td>
<td>Surface sediment recovery</td>
</tr>
<tr>
<td>03</td>
<td>Sediment deposition rates/sediment stability</td>
</tr>
<tr>
<td>04</td>
<td>Temporal trends in fish tissue concentrations</td>
</tr>
</tbody>
</table>
2015 DATA GAPS SAMPLING

<table>
<thead>
<tr>
<th>2015 Sampling and Analyses</th>
<th>Corresponding MNR Line of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk assessments</td>
<td>→ Ecological and human health risks</td>
</tr>
<tr>
<td>Sediment coring and chemistry analyses</td>
<td>→ Surface sediment recovery</td>
</tr>
<tr>
<td>Sediment geochronology analyses</td>
<td>→ Sediment deposition/sediment stability</td>
</tr>
<tr>
<td>Fish tissue chemistry</td>
<td>→ Temporal trends in fish</td>
</tr>
</tbody>
</table>
ECOLOGICAL & HUMAN HEALTH RISK ASSESSMENTS

• Screening-level ecological risk assessment
 • Porewater sample and analysis
 • AVS/SEM analysis
 • Spiked sediment studies
 • Bulk sediment concentrations

• Human health risk assessment
 • Compared 95% UCLs of COC concentrations to Texas Risk Reduction Program (TRRP) direct contact values
 • Evaluated fish tissue concentrations for multiple COCs
MNR LINE OF EVIDENCE #1
ECOLOGICAL & HUMAN HEALTH RISKS

Screening-level ecological risk assessment
• Current surface sediment chemical concentrations in CWB pose no ecological risks

Human health risk assessment
• Total PCB concentrations in some fish species are above risk-based exposure limits for human consumption
2015 SEDIMENT CHEMISTRY CORE LOCATIONS
SEDIMENT CORE VERTICAL PROFILES
PCBS

Aroclor - 1254
Concentration (mg/kg)

Aroclor - 1260
Concentration (mg/kg)

Depth (ft)

- ECB-101
- WCB-101
- WCB-102
- WCB-111
- PCL

Biologically active zone
TEMPORAL TRENDS IN SURFACE SEDIMENT CONCENTRATIONS

- Surface weighted average concentrations (SWACs) were used to compare surface PCB concentrations over time.
- Aroclor concentrations in East and West Cottonwood Bay showed decreasing SWACs over time.

West Cottonwood Bay
SWAC = 0.12 mg/kg

West Cottonwood Bay
SWAC = 0.04 mg/kg

Aroclor 1260
Surface concentration (mg/kg)
- ≤ 0.12 (0 - 1 x PCL)
- $> 0.12 \leq 0.24$ (1 - 2 x PCL)
- $> 0.24 \leq 0.6$ (2 - 5 x PCL)
- $> 0.6 \leq 1.2$ (5 - 10 x PCL)
- > 1.2 (> 10 x PCL)
MNR LINE OF EVIDENCE #2
SURFACE SEDIMENT RECOVERY

Surface sediment COC concentrations are recovering

• Decreasing surface sediment COC concentration over time

• High COC concentrations at depth, isolated by a surface layer of clean sediments
2015 SEDIMENT GEOCHRONOLOGY CORE LOCATIONS
SEDIMENT AGE DATING

- Radioisotopes dating using Pb-210 and Cs-137
- Cottonwood Bay current sedimentation rates

 1.2 to 1.6 cm/year

- Rates are consistent with 1995 data (USGS 2003)

 1 to 1.3 cm/year
The high proportion of fines is consistent with a quiescent, depositional environment.
WIND DRIVEN RESUSPENSION

- Evaluated potential erosion due to wind events
- Sediment scour prediction

 Scour < 1 mm
Sediments are stable

- Geochronology results demonstrate sedimentation rates of 1.2–1.6 cm/year in Cottonwood Bay
- Small grain size of surface sediments show a low energy, depositional environment
- Wind events are not expected to result in significant sediment resuspension
TEMPORAL TRENDS IN FISH TISSUE CONCENTRATIONS

• 1994–2008 fish tissue data available from the site
• Additional fish samples collected in 2015
• Temporal trends evaluated using the same species and tissue types (fillet or whole body)
TEMPORAL TRENDS IN FISH TISSUE PCB CONCENTRATIONS
MNR LINE OF EVIDENCE #4
TEMPORAL TRENDS IN FISH TISSUE PCB CONCENTRATIONS

PCB concentrations in fish tissue have generally decreased since the mid-1990s
• Observed trends in fish tissue concentrations typically lag behind changes in surface sediment concentrations
CONCLUSIONS

Multiple lines of evidence demonstrate MNR is an appropriate remedy to address surface sediment risks effectively

- Ecological risks are low and acceptable; potential human health risks result from consumption of fish with elevated PCB levels
- Surface sediment concentrations are decreasing over time
- Sediments are depositional and stable
- Fish tissue PCB concentrations are decreasing over time

Natural recovery processes are expected to achieve site-specific remedial goals in an acceptable time period
**MNR REMEDY FOR COTTONWOOD BAY
LONG-TERM MONITORING PROGRAM**

An MNR Response Action Plan for Cottonwood Bay has been partially-approved by TCEQ

- **Composite Surface Sediment Sampling**
 - Demonstrate decreasing surface sediment PCB levels over time

- **Bathymetric Surveys**
 - Confirm sediment stability over time

- **Fish Tissue Sampling**
 - Demonstrate decreasing fish tissue PCB levels over time

- **Incoming Suspended Sediment Sampling**
 - Support surface sediment and fish tissue time to recovery evaluations
QUESTIONS?

Kristin Searcy Bell
ksbell@ramboll.com