Biotransformation of γ-hexachlorocyclohexane (lindane) to non-toxic end products by sequential treatment with mixed anaerobic microbial cultures

Luz A. Puentes Jácome, Line Lomheim and Elizabeth Edwards
University of Toronto, Toronto, ON, Canada

Wenjing Qiao and Shujun Ye
Nanjing University, Najing, China

Xianjin Tang
Zhejiang University, Hangzhou, China

Sarra Gaspard
Université des Antilles, Guadeloupe, France
γ-hexachlorocyclohexane (γ-HCH) or lindane

1825: synthesis by M. Farady

1912: isolated by T. van der Linden

1942: insecticidal properties discovered

1950 – 2000: production of 600,000 t

1970: restricted use in the U.S. and other countries

2007: manufactured only in Russia and India, banned in the U.S.

2009: included in the Stockholm Convention POP list

2015: classified as carcinogenic

2019: aerobic degradation pathways and genes are relatively well understood; anaerobic biodegradation and the microorganisms involved are not well understood and anaerobic enzymes are unknown.

Aqueous solubility ~ 7 mg/L
Log Kow ~ 3.7
HCH isomers and technical HCH (t-HCH)

Figure 1 in Nayyar and Lar (2016), Hexachlorocyclohexane Contamination and Solutions: Brief History and Beyond. Emerging Model to Study Evolution of Catabolic Genes and Pathways. 10.4172/2155-6199.1000338.
HCH contamination is of global concern

Sabiñánigo, Aragon (Spain)
Generated 6800 t/year of solid HCH waste (1975–1988)
(Fernández, Arjol et al. 2013)

Guadeloupe and Martinique
Extensively used in banana crops
(Laquitaine, Durimel et al. 2016)

Bitterfeld-Wolfen, Germany
Produced 4200 t/y of lindane and technical HCH (1951–1982)
(Popp, Brüggemann et al. 2000)

Pearl River Delta, China
China produced ~ 33% of the global HCH (Zhang, Parker et al. 2002)
HCH microbial reductive dechlorination

\[\text{Electron acceptor} + 2H^+ + 2e^- \rightarrow \text{Electron donor} + 2H^+ + 2Cl^- \]

Dehalobacter sp. E1 (metabolic transformation of β-HCH)
Clostridium spp. (co-metabolic transformation of α-HCH and γ-HCH)
D. mccartyi strains BTF08 and 195 (co-metabolic transformation of γ-HCH)

The Guadeloupe transferred (GT) HCH enrichments

Rate: α ~ γ ~ δ > β

HCH microbial reductive dechlorination often leads to the accumulation of toxic by-products

- **sediment microcosms** (Boyle, Haggblom, Young 1999)
- **co-cultures** (Van Doesburg, Van Eekert et al. 2005)
- **anaerobic sludge** (Elango, Kurtz et al. 2011)
- **DNAPL pools from landfill leachate** (Fernandez, Arjol et al. 2013; Santos, Fernández et al. 2018)
- **D. mccartyi strains 195 and BTF08** (Bashir, Kuntze et al. 2018)
- **enrichment cultures** (Qiao, Puentes Jacome et al. 2019 in preparation)
Is anaerobic biotransformation of γ-HCH to non-toxic end products possible?

γ-HCH (lindane) → MCB → Benzene → CH₄ + CO₂

Microbial culture I + Microbial culture II + Microbial culture III = Non-toxic end products
Overview of anaerobic enrichment cultures

<table>
<thead>
<tr>
<th></th>
<th>Culture I</th>
<th>Culture II</th>
<th>Culture III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>HCH-contaminated sediments from Guadeloupe</td>
<td>TCE-contaminated soils in southern Ontario (KB-1-derived culture)</td>
<td>Soil samples from an Oklahoma Oil Refinery</td>
</tr>
<tr>
<td>Electron acceptor:</td>
<td>HCH</td>
<td>Monochlorobenzene (MCB)</td>
<td>CO₂</td>
</tr>
<tr>
<td>Electron donor:</td>
<td>Ethanol</td>
<td>Methanol</td>
<td>Benzene</td>
</tr>
<tr>
<td>Catalyzed reaction:</td>
<td>HCH → MCB + Benzene</td>
<td>MCB → Benzene</td>
<td>Benzene → CH₄ + CO₂</td>
</tr>
</tbody>
</table>

![Chemical reactions](image)

Date: 2019-03-04
Culture I, γ-HCH (lindane) is transformed to benzene and monochlorobenzene (MCB).

γ-HCH (lindane) is completely transformed to benzene and MCB.
Culture II, dechlorination of MCB to benzene

Cl

\[\text{MCB} \rightarrow \text{Benzene} \]

\[\Sigma < 1\% \]

\begin{itemize}
 \item Synergistia (c)
 \item Bacteroidetes (p)
 \item Dehalobacter (g)
 \item Peptococcaceae (f)
\end{itemize}

![Graph showing dechlorination of MCB to benzene](image)

![Pie chart showing bacterial distribution](image)

![Bar chart showing gene copy number](image)
Culture III, benzene degradation under methanogenic conditions

\[\text{Benzene} \rightarrow \text{H}_2 \rightarrow \text{CH}_3\text{COOH}^- \rightarrow \text{CH}_4 + \text{CO}_2 \]

- **CH\textsubscript{3}COOH- (acetate)**
- **H\textsubscript{2}**
- **CH\textsubscript{4} + CO\textsubscript{2}**

Pie Chart:
- **Σ < 1%**
- **Candidatus marinimicrobica (p)**
- **Spirochaetaceae (f)**
- **Deltaproteobacteria (c) (ORM2)**

Graphs:
- Time (d) vs. Benzene (mg/L)
- Time (d) vs. Copies/mL Culture

- **ORM2**
 - Fed
 - Starved

2019-03-04
Sequential biotransformation of γ-HCH

Phase I
- Autoclaved (n=3)
- Active (n = 9)
 - ~ 3.8 mg γ-HCH/bottle
 - ~ 42 mg γ-HCH/L of culture
 - ~ 150 μmol γ-HCH/L of culture

Phase II
- Addition of culture II

Phase III
- Addition of culture III
Phase I: γ-HCH was transformed to MCB and benzene
Phase II: MCB was dechlorinated to benzene

Active bottles with culture II (n=5)

Controls without culture II (n=3)

Gene copies per mL

Bacteria Dehalobacter
Phase III: benzene was biodegraded

Active bottles with culture III (n=2)

Control bottles without culture III (n=2)

Amount per bottle (µmol)

Time (d)

Benzene added

Deltaproteobacteria ORM2

Relative abundance

before inoculation

after inoculation

t = 337 d
t = 340 d
t = 412 d
Conclusions and Implications for HCH remediation

Our results indicate that successive or sequential bioconversion of γ-HCH all the way to non-toxic products is possible

- The process was accelerated using sequential addition of three specific anaerobic enrichment cultures.
- MCB and benzene can be biotransformed by anaerobic enrichment cultures.
- This approach is applicable to other HCH isomers, specially δ-HCH (low benzene to MCB ratio).
- Analogous to our experiments, field bioremediation approaches must be dynamic and should account for the spatial and temporal gradients in contaminated soils, sediments, and groundwater.
- Sequential bioaugmentation combined with active monitoring may be a suitable approach to tackle the world-wide HCH-contamination.
- Suitable technologies to deploy enrichment cultures in sediments need to developed and/or evaluated.
Acknowledgments

- Ontario Graduate Scholarship
- NSERC CREATE RENEW
- Ontario – China Research and Innovation Fund (OCRIF)
- Andrei Starostine, Sarra Gaspard, Fei Luo
- Edward’s lab members: Courtney Toth, Olivia Molenda, and Shen Guo

luz.puentesjacome@mail.utoronto.ca, elizabeth.edwards@utoronto.ca