# wood.

## A Screening Tool for Selection of Treatment Systems for PFAS in Aqueous Solutions

Presented by: Dave Woodward – Wood E&IS



woodplc.com

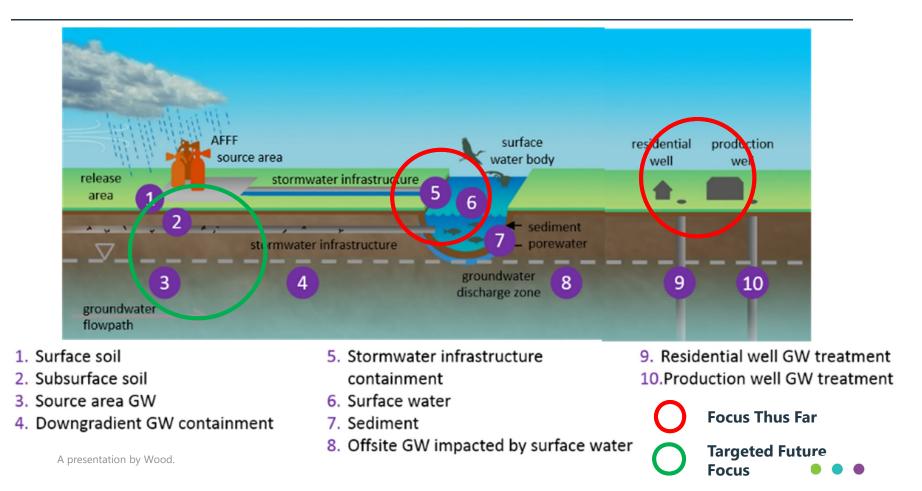
## Introduction

- Background/Drivers
- Remediation and Treatment
   Scenarios
- Landscape of Treatment Needs
- Screening Tool
- Summary/Conclusions
- Next Steps
- Questions

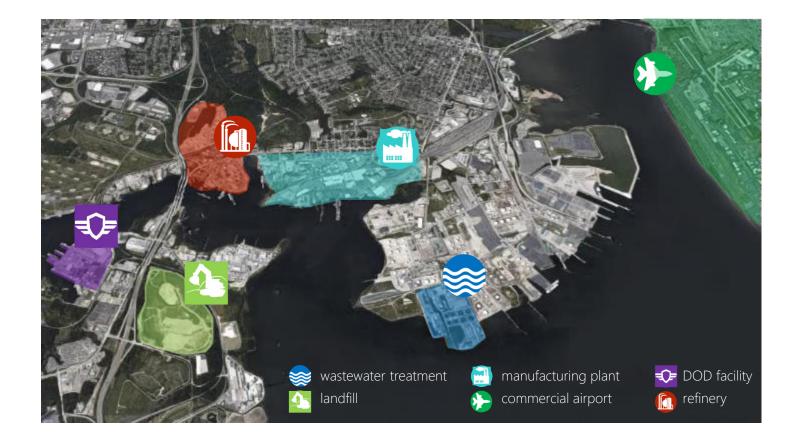




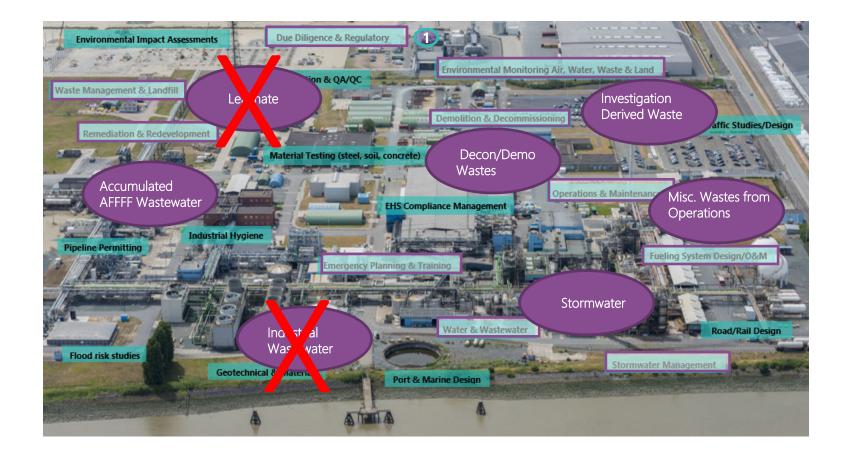



## Background/Drivers

- Rapid and increasingly stringent regulatory thresholds and Statewide Directives
- US EPA National PFAS Action Plan
- Laboratory advancements
- AFFF Legislation
- Increased awareness of non-AFFF sources
- Increasing Litigation

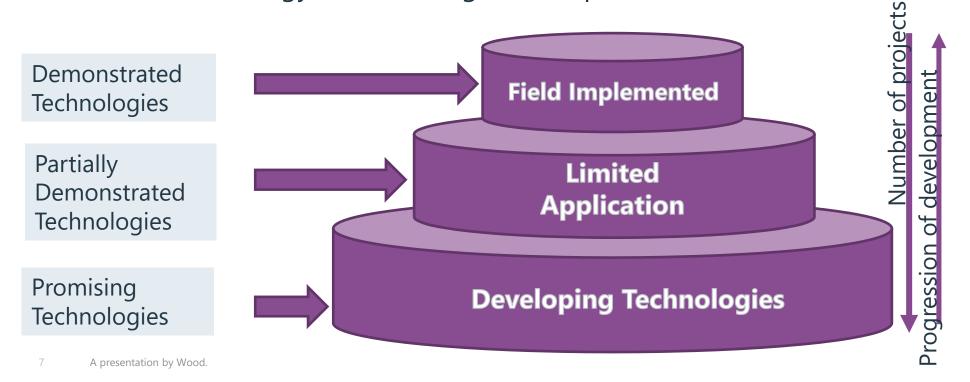

Drinking water -- Groundwater- -- Soil -- Air --- Surface water Social drivers and amplified risk




#### **Remediation and Treatment Scenarios**



## **Remediation Scenarios - Fictitious Urban Area**




## PFAS Throughout a Facility – What about Non-Remediation Treatment Needs?





#### How does technology move through development?



## Water Treatment Technologies Tested on PFAS

8

8

#### Most testing to date on low level PFAS concentrations in water.

| Ex-Situ                                                                                                                                                                                |             | In-Situ                                                                                                                                                           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>GAC</li> <li>Modified zeolite</li> <li>Ion exchange resin</li> <li>Reverse osmosis</li> <li>Chemical or electro-<br/>coagulation</li> <li>Nano membrane filtration</li> </ul> | Separation  | <ul><li>PlumeStop</li><li>Phytoremediation</li></ul>                                                                                                              |  |  |  |
| <ul> <li>Incineration</li> <li>Advanced oxidation</li> <li>Electrochemical oxidation</li> <li>Sonolysis</li> <li>Enhanced Contact Plasma</li> </ul>                                    | Destruction | <ul> <li>Chemical oxidation</li> <li>Chemical reduction</li> <li>Microbial degradation</li> <li>Fungal degradation</li> <li>Enzyme catalyzed oxidation</li> </ul> |  |  |  |

Most testing conducted without consideration of co-contaminants.

A presentation by Wood.

#### Available Full Scale Water Remediation/Treatment Alternatives

- Granular Activated Carbon Sorption
  - Conventionally used for water treatment
  - Concerns with short chain PFAS removal
  - Readily available and relatively inexpensive media
- Ion Exchange (IX) Resin Sorption
  - Effective removal of PFAS longer bed life than GAC
  - Regenerable and non-regenerable options
  - Life cycle cost advantages

#### • Reverse Osmosis (Membrane)

- Efficient for PFAS removal
- Produces a concentrated PFAS laden liquid stream
- Positive barrier





High Temp Incineration or Landfill (Resin or Regenerant

High Temp Reactivation

or Landfill

High Temp Incineration  $\rightarrow$  IX Resin and Incineration









wood

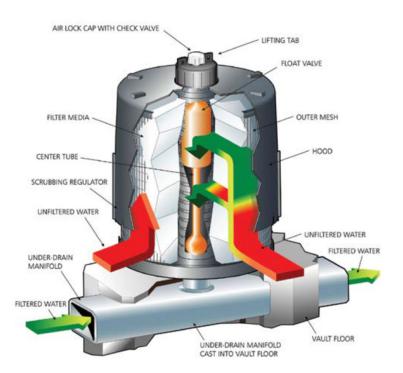
A presentation by Wood.

9

### Simple POET GAC or Single Use Resin System – PFAS Only



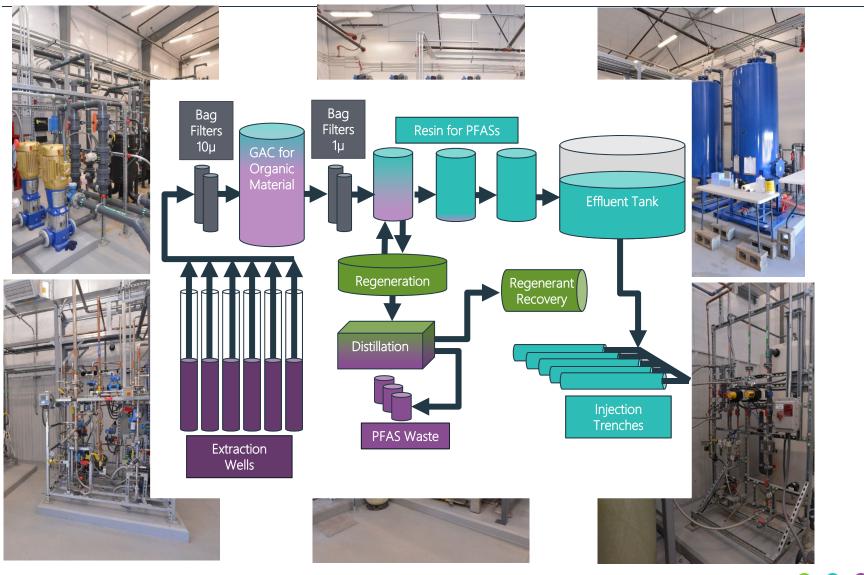





A presentation by Wood.

## Passive Stormwater Treatment – PFAS Only








A presentation by Wood.



## Complex Regenerable IX System with Pre-Treatment



A presentation by Wood.

## Temporary Treatment of High PFAS in Fire Training Rinsate

- Temporary Treatment of high concentration PFAS and Co-contaminants is especially challenging
- Pilot scale treatment of collected fire training water
  - Up to 6 ppm PFOA and >10 ppm Total PFAS
  - Free oil and grease
  - High concentration of PAHs/TOC
- Treatment flow ~10gpm with sewer discharge below HAL
- Treatment Train:
  - Sequential filtration
  - Organoclay Media O&G Removal
  - GAC PAH Removal
  - Non-Regenerable IX Resin PFAS Removal
  - 99.99999% removal to achieve discharge criteria








#### Key Considerations for Treatment Alternatives

- RO offers advantage of Removing Other Contaminants but has disadvantage of high volume reject waste
- Evaluate Pre-treatment Needs First for Sorption Technologies
  - Metals/Iron Fouling
  - Petroleum Hydrocarbons and TOC
  - Glycols
  - Chlorinated VOCs
  - PFAS can't be removed without removing these interfering contaminants first
- Other Key Considerations for Sorption Technologies
  - Influent PFAS Concentrations (including Precursors and Short Chains?)
  - PFAS and Non-PFAS Discharge Criteria
  - Flow rate
  - Pressure loss across bed
  - Bed size/Empty Bed Contact Time Requirements
  - Desired or Required Waste Disposal or Destruction Method





## Design Implications – Typical Scenarios

#### Leachate Treatment

- Requires significant pretreatment before PFAS can be addressed
- Significant WW capital investment

#### Contaminated Groundwater

- Ranges from Downgradient Containment to Source Area Extraction
- TOC and other contaminant impacts to operation of PFAS treatment systems
- May require pre-treatment for major interfering parameters (VOCs, PAHs)

#### • Potable & non-potable Groundwater

- Otherwise clean GW
- PFAS treatment directly
- Watch for ionic species interferences/scaling issues

#### Stormwater

- Generally low concentration of PFAS
- Dramatic flow increases are challenge vs. co-contaminants
- Can consider passive treatment systems

#### • Other emerging PFAS – Short Chains and Precursors

- We are anticipating these treatment requirements and generally are selected technologies better suited to treat them
- Consider modularity/expandability of systems to accommodate add on treatment trains





### Screening Tool PFAS Considerations and Landscape

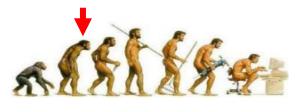
| Application/scenario          | Drinking water     | POET               | Pump & Treat       | Industrial Waste   | AFFF Decon         | Leachate           |  |  |  |
|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|
| Short Chain (>50%)            | Non-regenerable IX |  |  |  |
| Long Chain (>50%)             | Non-regenerable IX |  |  |  |
| Influent (order of magnitude) |                    |                    |                    |                    |                    |                    |  |  |  |
| infleunt ppm                  | GAC                | GAC                | GAC                | GAC                | GAC                | GAC                |  |  |  |
| influent ppb                  | Non-regenerable IX |  |  |  |
| influent ppt                  | Best Practice      |  |  |  |
| Target Treatment Levels       |                    |                    |                    |                    |                    |                    |  |  |  |
| effluent ND                   | GAC                | GAC                | GAC                | GAC                | GAC                | GAC                |  |  |  |
| effluent < .07 ppb            | Non-regenerable IX |  |  |  |
| effluent .07 - 1 ppb          | GAC/Regenerable IX | GAC/Regenerable IX | GAC/Regenerable IX | GAC/Regenerable    | GAC/Regenerable IX | GAC/Regenerable IX |  |  |  |
| effluent > 10 ppb             | Regeneralbe IX     |  |  |  |



## Screening Tool – Development, Purpose, and Use

- Based on experience evaluating treatment at dozens of sites
- Decision Matrix to ensure all key considerations have been evaluated
- Intended to Guide Treatment Alternatives for further evaluation vs. to select Final Treatment Technology
- Bench and/or Pilot Testing likely still required but may be avoided
- Simple applications involving low PFAS influent concentrations and no co-contaminants may not require bench/pilot testing
  - Drinking Water Treatment Low Level PFAS only
  - Pump and Treat Containment Systems Low Level PFAS only
  - Significant adsorption capacity advantage for Non-regenerable Single Use Resins
  - Non-regenerable Single Use Resins offer a number of additional advantages including lower footprint, smaller EBCT, and generally better performance on Short Chains and equal or better performance on Precursors




#### A presentation by Wood.

## Conclusions

- We've only begun to tackle landscape of PFAS treatment
  - Ranges from simple PFAS removal only at PPT levels to — Mixed industrial waste requiring significant treatment train for pre-treatment
- Short chain and Precursor regulations and lab advancements will place additional pressure on treatment systems or require additional technologies
- A Screening Tool can be a valuable guide and inform bench/pilot testing technology selection
- Desire to destroy waste onsite may drive future treatment technology selection
- ????
- ?????



PFAS Treatment Today



## Next Steps

- The GAC IX resin combination is very effective at treating waters impacted by PFAS
- The ability to regenerate on-site provides substantial protection against fluctuations in concentrations
- The IX resin regeneration, regenerant recovery, and superloading process is capable of substantially reducing the PFAS waste stream
- The technology provides resiliency against the sl marketplace

#### Technology advances in on-site destruction will waste minimization

- ESTCP plasma destruction Wood, ECT, Clark
- Electrochemical Oxidation ECT, University o







## Questions

Thank you to Co-authors:

- Bill Malyk, PE Wood E&IS
- Nathan Hagelin, PG Wood E&IS
- Francis Boodoo, PE Purolite

#### **PFAS Treatment Train**

