

Installation, Startup, and Operation of World's First Regenerable Resin System for PFAS Removal

Presented by: Rob Singer, PE – Wood E&IS Co-Authored by: Steve Woodard, ECT

woodplc.com

Introduction

- Site background
- Project development
- Full-scale implementation
- Start-up and operation
- Performance to date
- Future plans

FORMER PEASE AIR FORCE BASE SITE 8 – INTERIM MITIGATION SYSTEM IMPLEMENTATION GROUNDWATER EXTRACTION AND TREATMENT FACILITY

SUBCONTRACTORS:

OWNER: Air Force Civil Engineer Center

AUTHORITIES/STAKEHOLDERS:

Pease Development Authority United States Environmental Protection Agency New Hampshire Department of Environmental Services

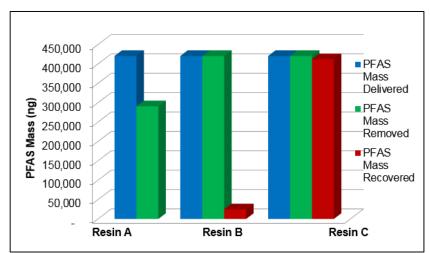
ARCHITECT/ENGINEER/PRIME CONTRACTOR: Amec Foster Wheeler Environment & Infrastructure. Inc.

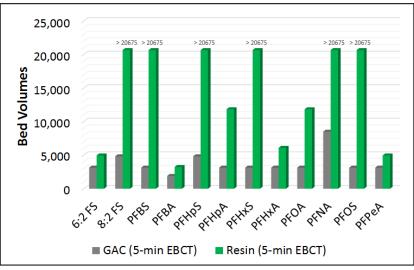
Maher Services Ground Water Treatment & Technology

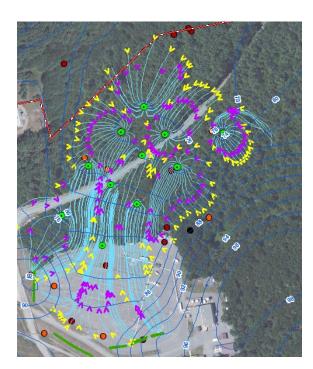
MassBay Electric

ect₂

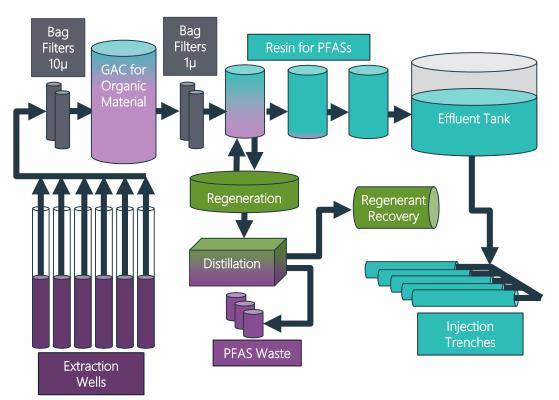
Former Pease AFB


- PFOS and PFOA first identified in 2013
- Drinking water impacts confirmed in 2014
- Base-wide investigations started
- Interim actions initiated




Project development – 2015 bench/pilot testing

- Bench-scale testing identified an IX resin for PFAS removal that could be regenerated
- Wood contracted by the Air Force to perform pilot-scale testing of ECT's regenerable IX resin and coal-based GAC
- After 6-months of testing and five loading cycles
 - IX resin substantially more effective at PFAS removal
 - IX successfully regenerated



Full-scale implementation - design

- Extraction design: 110 gpm
- Treatment capacity: 200 gpm

Full-scale implementation - construction

Full-scale implementation – construction complete

Commissioning – April 2018

Full-scale implementation – treatment process

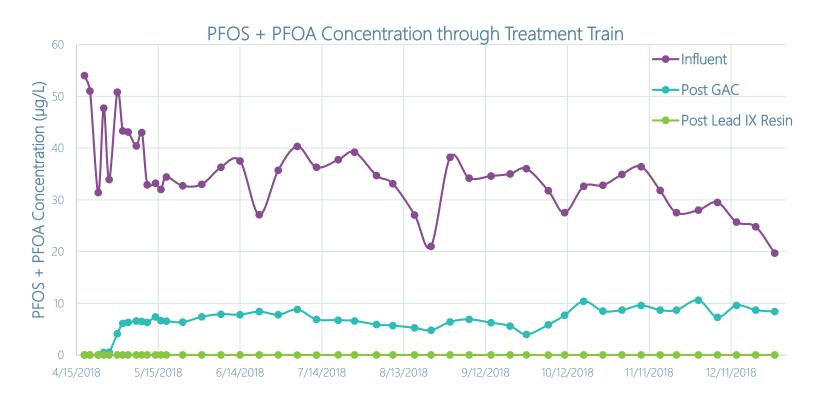
Pretreatment bag filters & GAC

IX resin vessel skid IX resin polish vessels

Full-scale implementation – regeneration process

Regeneration skid

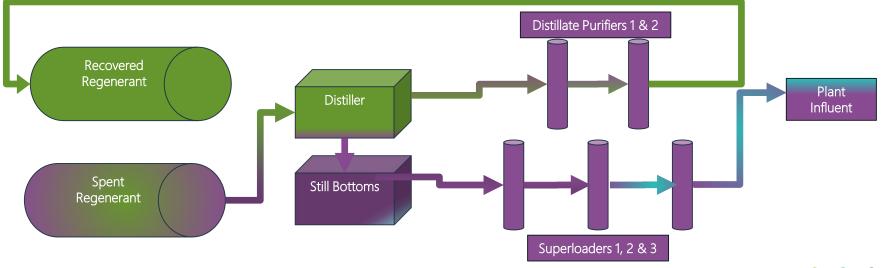
Distiller


Still bottoms and superloader

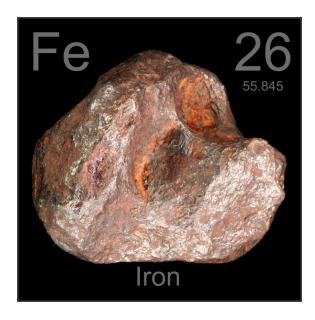
9 A presentation by Wood.

Start-up and operations

- IX resin performance
 - 44,000 bed volumes treated
 - 27,300 on the current loading cycle
- Operating lead resin EBCT ~8 min



Start-up and operations


Start-up and operations - regeneration

Sample Location	PFOS (µg/L)	PFOA (µg/L)
P-7200 Effluent - Regenerant Recovery Pump (Distiller Influent)	25	16
Superloader 1 inlet (Still Bottoms)	540	220
Post Superloader 1	0.19	0.010 U
Post Superloader 2	0.12	0.010 U
Post Superloader 3	0.086	0.010 U
T-7420 Influent -Distallate Purifier	0.50	2.9
T-7420 Effluent - Distillate Purifier #1	0.015 U	1.1
T 7430 Effluent - Distillate Purifier #2	0.015 U	0.010 U

Challenges and lessons learned

- Iron fouling at the front end of the plant
- Iron <0.5 mg/L during initial pumping tests of three wells
- Iron >8 mg/L with ten wells operational
- Required shutdown of seven wells

Challenges and lessons learned

- GAC can be a workhorse rarely is GAC run to full exhaustion during pilot tests or during full-scale operation
- Fire protection requirements can drive project costs and logistics when it comes to regeneration technology
- SOPs to support regeneration have evolved as the project has progressed
- Uncertainties remain with PFAS chemistry and transformation (6:2 FTS in effluent)
- Waste disposal options are becoming increasingly limited whether soil, sludge, or spent media

Conclusions

- The GAC IX resin combination is very effective at treating waters impacted by PFAS
- The ability to regenerate on-site provides substantial protection against fluctuations in concentrations
- The IX resin regeneration, regenerant recovery, and superloading process is capable of substantially reducing the PFAS waste stream
- The technology provides resiliency against the shifting disposal marketplace
- Technology advances in on-site destruction will further improve waste minimization
 - ESTCP plasma destruction Wood, ECT, Clarkson University
 - Electrochemical Oxidation ECT, University of Georgia

woodplc.com