Innovation that provides sustainable solutions to complex challenges worldwide

Parameterization of Project Footprints – Estimating Your Impact

April 18, 2019

Betsy Collins, P.E., LEED Green Associate, Project Engineer, Jacobs Paul Favara, P.E., LEED Green Associate, Technology Fellow, Jacobs Frank Messina, ExxonMobil E&PS - Environmental

www.jacobs.com | worldwide

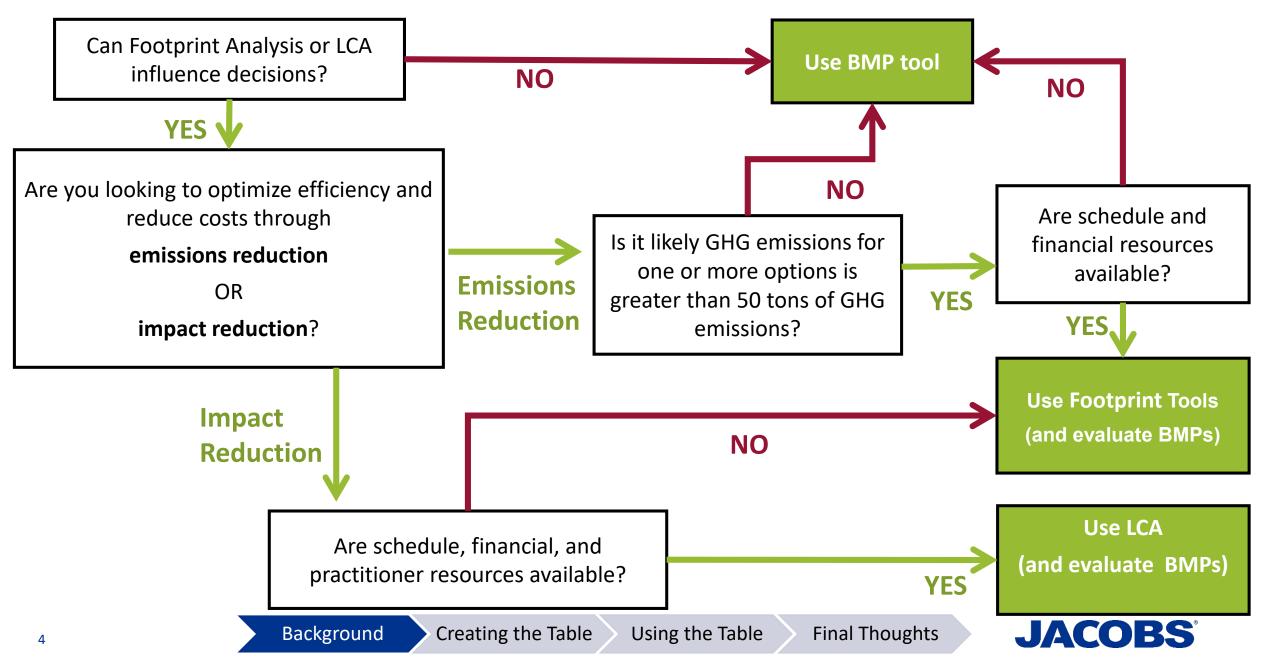
CH2M is now Jacobs

Agenda

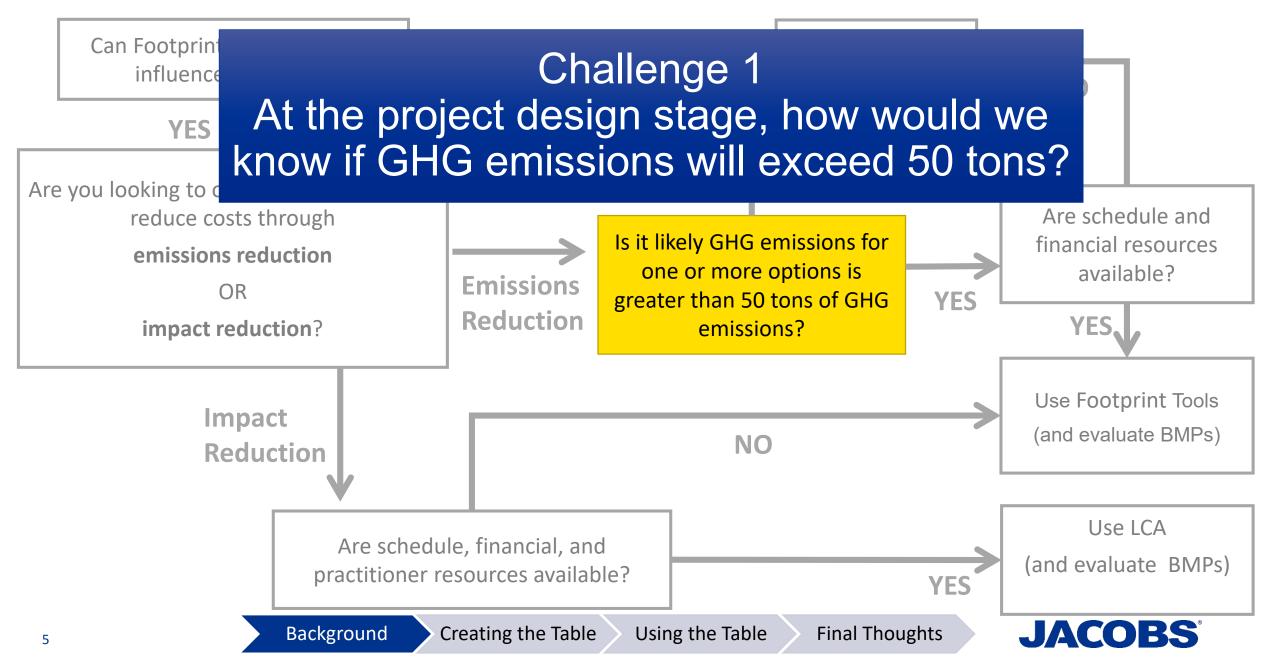
- Review current challenges with using sustainability tools
- Present potential solution Table of Green and Sustainable Remediation (GSR) Reference Projects in terms of "Functional Units"
 - How was the Functional Units Table created?
 - How should the Functional Units Table be used?
- Final Thoughts

2

Common Sustainability Tools


Creating the Table

Using the Table



_ 8 ×

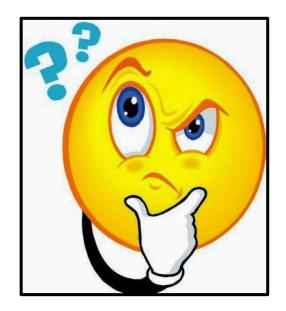
How do we choose the best tool?

How do we choose the best tool?

How do we know if our Sitewise Results make sense?

Project Details

- Operation of an existing Soil Vapor Extraction (SVE) system for 12 months (1,186 MWHr) inclusion 10 000 lbs of recent to CAC percent.
 Operation of the structure of the
- Operation a Additionally for one yea
 Once a footprint analysis is complete how do we know if our results make sense and are "reasonable"?


Footprint Results (from Sitewise V3.1)

	NOx	SOx	GHG	PM	Energy
	(Metric Tons)	(Metric Tons)	(metric tons)	(metric tons)	(MMBtu)
Results (Using Sitewise V3.1)	4.57E+05	2.59E-01	3.61E+00	4.42E+00	5.47E+00

How can we address these challenges?

Proposed Solution

- 1. Evaluate reference footprint assessments
- 2. Estimate GSR impacts in terms of a defined functional unit
- 3. Use results to estimate a project footprint

Challenge 1

At the project design stage, how would we know if GHG emissions will exceed 50 tons?

Challenge 2

Once a footprint analysis is complete how do we know if our results make sense and are "reasonable"?

Evaluate Reference Footprint Assessments

- Identified 19 reference projects completed with Sitewise Version 3.0 and 3.1
 - Included 10 key technologies/categories

1.	Soil vapor extraction	6.	Low permeability cover
2.	In situ bioremediation	7.	Well installation
3.	In situ chemical oxidation	8.	Excavation and disposal
4.	Air sparging/bio sparging	9.	Long-term monitoring
5.	In situ chemical reduction	10.	Transportation

• Evaluated five core outputs

Evaluated five core outputs	3.	Greenhouse Gas (GHG)
1. Nitrous Oxide (NOx)	4.	Particulate Matter (PM)
2. Sulfur Oxide (SOx)	5.	Energy Use

Functional units include: Per MWHr of operation Per 1,000 feet of cubic media Per ton of substrate Per ton of oxidant Per ton of amendment Per 100 feet of well installed Per well sampled Per acre covered Per 20 bank cubic yards Per ton mile

Estimate GSR impacts in terms of a defined functional unit Example 1: Well Installation

Reference Project

<u>Description</u> Install 10-2 inch diameter wells installed via sonic drilling to 50 ft bgs with 5 foot screens (total 500 feet of well)

Sitewise Results

Calculated Functional Unit

Description Divided reference results by 5 to generate well installation impacts per 100 feet

Functional Unit Results:

Impact per 100 feet of well installed

NOx (Metric Tons)	SOx (Metric Tons	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
5.02E-03	3.70E-03	7.59E+00	6.86E-04	1.70E+03

Final Thoughts

JACOBS

NOx (Metric Tons)	SOx (Metric Tons	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
2.51E-02	1.85E-02	3.80E+01	3.43E-03	8.51E+03

Creating the Table

Estimate GSR impacts in terms of a defined functional unit Example 2: In Situ Bioremediation

Reference Project

<u>Description</u> 99 permanent injection wells (5,205 feet drilled), 2 events, 231,765 lb EVO per event. (~621,000 cubic feet of media)

Sitewise Reference Results

Calculated Functional Unit

Description Divided reference results by 621 to generate well installation impacts per 1,000 feet of media

Functional Unit Results:

Impact per ton of substrate

nergy IMBtu)	NOx (Metric Tons)	SOx (Metric Tons	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
39E+04	3.98E-04	7.14E-04	9.08E-01	1.65E-04	1.43E+02

NOx (Metric Tons)	SOx (Metric Tons	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
2.47E-01	4.43E-01	5.64E+02	1.02E-01	8.89E+04

Background

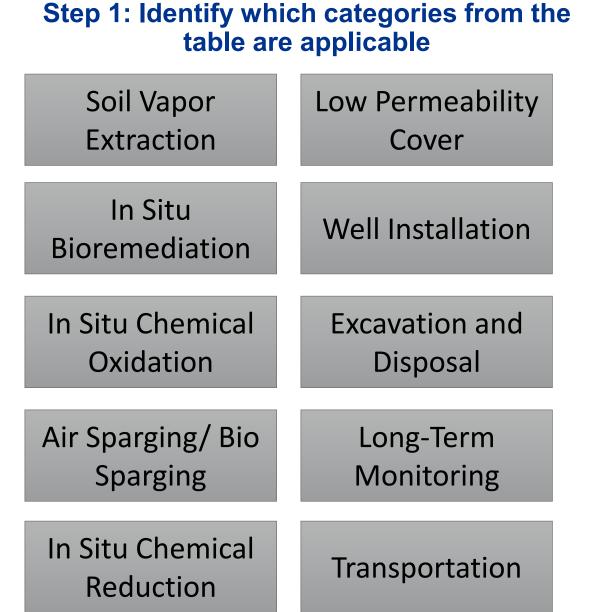
10

Creating the Table

Using the Table

Estimate GSR impacts in terms of a defined functional unit Result: Functional Unit Table

	Reference Project Narrative											
			Reference Pr	oject Narrative								
	Reference Project 1											
Soil Vapor Extraction (SVE)	One horizontal well (600 feet of 4-inch HDPE), 15-hp blower operating for 5 years (490 megawatt-hours)											
-						years (490 megawatt	hours)	ting for 5 years (980 gawatt-hours)				
	_	Functional Unit	NO _X (metric	SO _X (metric	GHG (metric	PM (metric	Energy (MMBtu)	· ·				
			tons)	tons)	tons)	tons)						
In Situ Bioremediation (ISB) (Enhand Reductive Dechlorination [ERD])		per MWHr of operation	9.81E-04	4.50E-03	9.44E-01	1.99E-03	1.17E+01	njection wells (5,205 feet ents, 231,765 lb EVO per tion and operation only.				
	Soil Vapor Extraction (SVE)		1.43E-02	6.56E-02	1.38E+01	2.90E-02	1.70E+02) Ib total reagent)				
	per ton of oxidant 4.28E-02	2.48E-02 1.89E-02 1.40E-0	2 1.50E+01 1.67E+01	6.69E-03 4.90E-03	3.98E+03 3.14E+03	16 wells installed (780 fee	et drilled), 1 99 injection w	ells installed (5,205 feet				
In Situ Chemical Oxidation (ISC	Reference Project Narrative											
	Reference Project 2											
	Install 48 SVE wells to 4 fe	eet bgs (SCH 40 PVC),	6,000 lbs virgin G	AC, and 30 hp bl	ower operating f	or 5 years (980 n	negawatt-hours)	a 1,020-foot horizontal				
						injection wells, 3,000 fee	et of HDPE HDPE injection	well, 100-hp compressor				
Air Sparging (AS)/Bio Sparging		Functional Unit	NO _x (metric	SO _x (metric	GHG (metric	PM (metric		for 1 year (520 megawatt-				
			tons)	tons)	tons)	tons)	Energy (MMBtu)	ction and operation only.				
1		per MWHr of operation	5.56E-04	1.09E-03	8.07E-01	1.27E-03	5.43E+01					
	Soil Vapor Extraction (SVE)	per 1,000 cubic feet of media	5.35E-03	1.05E-02	7.77E+00	1.23E-02	5.22E+02					

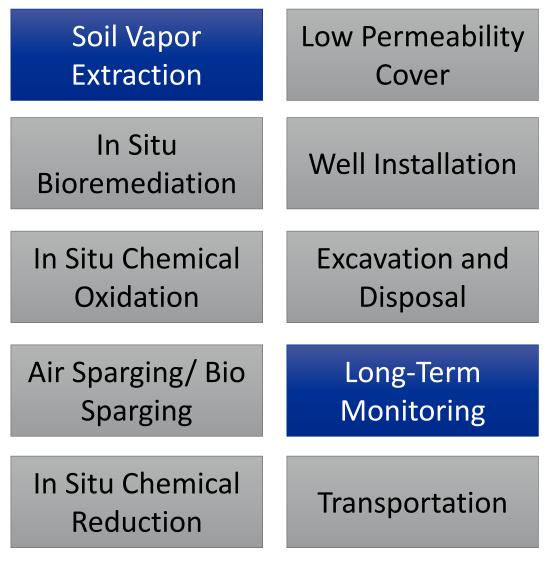


Final Thoughts

Review Project

Description

- **Operation of an existing Soil Vapor** Extraction (SVE) system for 12 months (1,186 MWHr) including 10,000 lbs of regenerated GAC per month.
- Operation and maintenance of the system is estimated to include 260 30mile trips. Additionally, groundwater from 15 existing wells will be sampled via low-flow quarterly for one year, for a total of 60 wells sampled.



JACOBS

Review Project

Description

- Operation of an existing Soil Vapor Extraction (SVE) system for 12 months (1,186 MWHr) including 10,000 lbs of regenerated GAC per month.
- Operation and maintenance of the system is estimated to include 260 30mile trips. Additionally, groundwater from 15 existing wells will be sampled via low-flow quarterly for one year, for a total of 60 wells sampled.

Step 1: Identify which categories from the

table are applicable

13

Review Project

Description

- Operation of an existing SVE system for 12 months (1,186 MWHr) including 10,000 lbs of regenerated GAC per month.
- Operation and maintenance of the system is estimated to include 260 30mile trips. Additionally, groundwater from 15 existing wells will be sampled via low-flow quarterly for one year, for a total of 60 wells sampled.

Step 2: Identify which reference project best matches the review project

Soil Vapor Extraction (SVE)

Reference Project 1: One horizontal well (600 feet of 4-inch HDPE), 15-hp blower operating for 5 years (490 megawatthours) Reference Project 2: Install 48 SVE wells to 4 feet bgs (SCH 40 PVC), 6,000 lbs virgin GAC, and 30 hp blower operating for 5 years (980 megawatt-hours)

Review Project

Description

- Operation of an existing SVE system for 12 months (1,186 MWHr) including 10,000 lbs of regenerated GAC per month.
- Operation and maintenance of the system is estimated to include 260 30mile trips. Additionally, groundwater from 15 existing wells will be sampled via low-flow quarterly for one year, for a total of 60 wells sampled.

Step 2: Identify which reference project best matches the review project

Soil Vapor Extraction (SVE)

Reference Project 1: One horizontal well (600 feet of 4-inch HDPE), 15-hp blower operating for 5 years (490 megawatthours) Reference Project 2: Install 48 SVE wells to 4 feet bgs (SCH 40 PVC), 6,000 lbs virgin GAC, and 30 hp blower operating for 5 years (980 megawatt-hours)

Review Project

Description

- Operation of an existing SVE system for 12 months (1,186 MWHr) including 10,000 lbs of regenerated GAC per month.
- Operation and maintenance of the system is estimated to include 260 30mile trips. Additionally, groundwater from 15 existing wells will be sampled via low-flow quarterly for one year, for a total of 60 wells sampled.

Step 2: Identify which reference project best matches the review project

Soil Vapor Extraction (SVE)

Reference Project 1: One horizontal well (600 feet of 4-inch HDPE), 15-hp blower operating for 5 years (490 megawatthours) Reference Project 2: Install 48 SVE wells to 4 feet bgs (SCH 40 PVC), 6,000 lbs virgin GAC, and 30 hp blower operating for 5 years (980 megawatt-hours)

Long-Term Monitoring (LTM)

Reference Project 1: Install six monitor wells to 60 feet bgs. Sample 15 wells per event (personnel travel 500 miles), no IDW due to passive sampling, 10 events. (150 wells sampled) Reference Project 2: Install two monitor wells to 60 ft bgs. Sample 14 wells per event (personnel travel 80 miles), 140 gallons water generated per event, 34 events (476 wells sampled)

JACOBS[°]

Review Project

Description

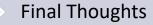
- Operation of an existing SVE system for 12 months (1,186 MWHr) including 10,000 lbs of regenerated GAC per month.
- Operation and maintenance of the system is estimated to include 260 30mile trips. Additionally, groundwater from 15 existing wells will be sampled via low-flow quarterly for one year, for a total of 60 wells sampled.

Step 2: Identify which reference project best matches the review project

Soil Vapor Extraction (SVE)

Reference Project 1: One horizontal well (600 feet of 4-inch HDPE), 15-hp blower operating for 5 years (490 megawatthours) Reference Project 2: Install 48 SVE wells to 4 feet bgs (SCH 40 PVC), 6,000 lbs virgin GAC, and 30 hp blower operating for 5 years (980 megawatt-hours)

Long-Term Monitoring (LTM)


Reference Project 1: Install six monitor wells to 60 feet bgs. Sample 15 wells per event (personnel travel 500 miles), no IDW due to passive sampling, 10 events. (150 wells sampled) Reference Project 2: Install two monitor wells to 60 ft bgs. Sample 14 wells per event (personnel travel 80 miles), 140 gallons water generated per event, 34 events (476 wells sampled)

JACOBS[°]

Step 3: Multiply the selected reference project values by the functional unit quantity

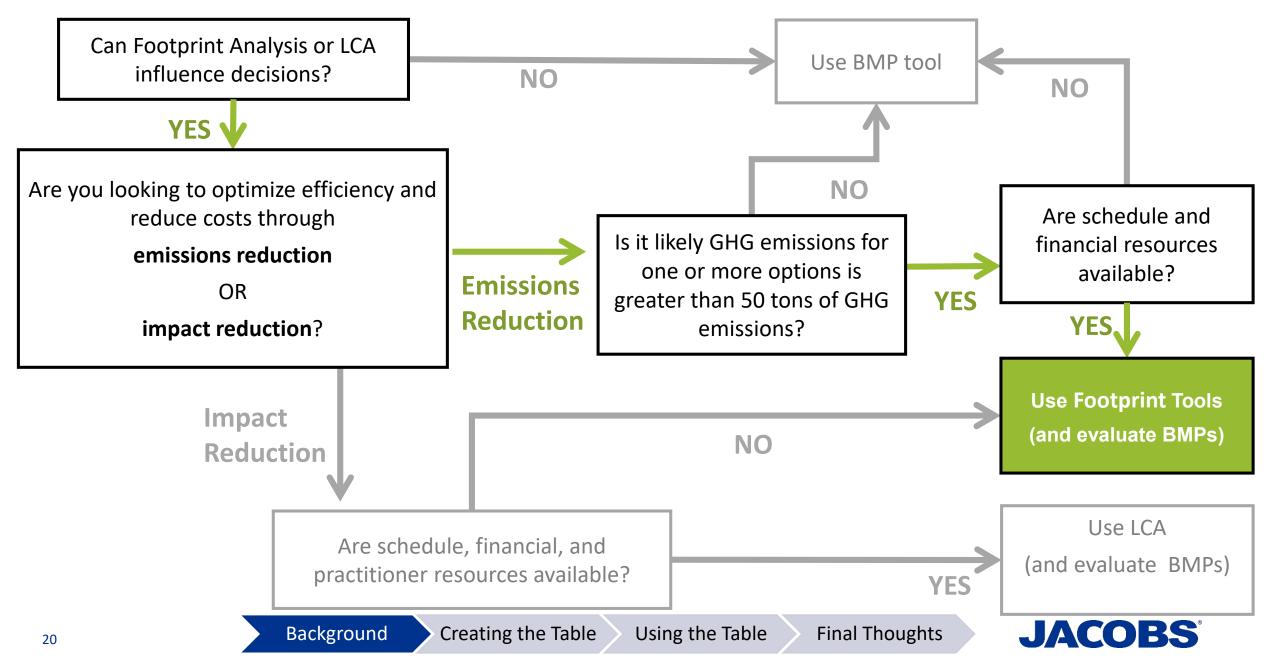
Table 1. GSR Reference Project Results,	, in terms of Functional Unit												
	Functional Unit	NO _x (me	tric tons)	SO _x (me	tric tons)	GHG (me	etric tons)	PM (me	tric tons)	Energy (MMBtu)		Reference Pro	oject Narrative
		Ref 1	Ref 2	Ref 1	Ref 2	Ref 1	Ref 2	Ref 1	Ref 2	Ref 1	Ref 2	Reference Project 1	Reference Project 2
Soil Vapor Extraction	per MWHr of operation	9.81E-04	5.56E-04	4.50E-03	1.09E-03	9.44E-01	8.07E-01	1.99E-03	1.27E-03	1.17E+01	5.43E+01	One horizontal well (600 feet of 4-inch HDPE), 15-hp blower operating for 5 years (490 megawatt-hours)	Install 48 SVE wells to 4 feet bgs (SCH 40 PVC), 6,000 lbs virgin GAC, and 30 hp blower
(SVE)	per 1,000 cubic feet of media	1.43E-02	5.35E-03	6.56E-02	1.05E-02	1.38E+01	7.77E+00	2.90E-02	1.23E-02	1.70E+02	5.22E+02		operating for 5 years (980 megawatt-hours)
Long-term Monitoring (LTM)	per well sampled	1.30E-04	3.40E-05	2.40E-05	4.30E-06	6.90E-02	5.98E-02	3.10E-05	1.10E-05	9.00E-01	8.10E-01	Install six monitor wells to 60 feet bgs. Sample 15 wells per event (personnel travel 500 miles), no IDW due to passive sampling, 10 events. (150 wells	Install two monitor wells to 60 ft bgs. Sample 14 wells per event (personnel travel 80 miles), 140 gallons non- hazardous water generated per event (transported 200 miles away), 34 events. (476 wells sampled)

Category	Functional Unit	Review Project Quantity	NOx (Metric Tons)	SOx (Metric Tons	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
SVE	MWHr of Operation	1186	(1186 X 5.56E-4) = 6.59E-01	(1186 X 1.09E-3) = 1.29E+00	(1186 X 8.07E-1) = 9.57E+02	(1186 X 1.27E-3) = 1.51E+00	(1186 X 5.43E+1) = 6.43E+04
LTM	Number of wells sampled	60	(60 X 1.30E-4) = 7.80E-03	(60 X 2.40E-5) = 1.44E-03	(60 X 6.90E-2) = 4.14E+00	(60 X 3.10E-5) = 1.86E-03	(60 X 9.00E-1) = 5.40E+01
		Total	6.67E-01	1.30E+00	9.61E+02	1.51E+00	6.44E+04

JACOBS[®]

Challenge 1: At the project design stage, how would we know if GHG emissions will exceed 50 tons?

Is it likely GHG emissions for one or more options is greater than 50 tons of GHG emissions?


Category	Functional Unit	Review Project Quantity	NOx (Metric Tons)	SOx (Metric Tons	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
SVE	MWHr of Operation	1186	6.59E-01	1.29E+00	9.57E+02	1.51E+00	6.43E+04
LTM	Number of wells sampled	60	7.80E-03	1.44E-03	4.14E+00	1.86E-03	5.40E+01
		Total	6.67E-01	1.30E+00	9.61E+02	1.51E+00	6.44E+04
					'		

 20 minute exercise (Steps 1 to 3) can help determine whether the project is best suited for best management practices, footprint analysis, or life cycle assessment

How do we choose the best tool?

Using the Table

Step 4: Compare actual Sitewise Results to the Calculated Estimate

	NOx (Metric Tons)	SOx (Metric Tons)	GHG (metric tons)	PM (metric tons)	Energy (MMBtu)
Estimated Results (using the table)	6.67E-01	1.30E+00	9.61E+02	1.51E+00	6.44E+04
Actual Results (Using Sitewise V3.1)	4.57E+00	2.59E+00	3.61E+03	4.42E+00	5.47E+04

- Similar values are likely "reasonable"
- NOx and GHG values differ by more than a factor of three and require further consideration

 20 minute exercise (Step 4) can help us feel good that our calculated Sitewise results make sense and are "reasonable"

Disclaimer

- Use of this tool is NOT meant to be a substitute for a footprint analysis
- This method is just one way to address these challenges
- There are numerous category specific common oversights, pitfalls, and additional considerations in applying Sitewise

Challenges Addressed

At the project design stage, how would we know if GHG emissions will exceed 50 tons?

Once a footprint analysis is complete how do we know if our results make sense and are "reasonable"?

Final Thoughts

22

Key Takeaways

- Teams are aware of common sustainability tools but don't know how to choose them
- A novice sustainability practicioner may not understand if footprint results are "reasonable"
- It is the job of sustainability champions to not only advocate for the use and consideration of these tools, but to develop the quality control tools to allow beginners to use them

Thank you!

Betsy Collins, P.E.

© Copyright Jacobs June 10, 2019

www.jacobs.com | worldwide