Battelle

2019 Bioremediation Symposium | April 15-18 | Baltimore, Maryland

Electro-coagulation Treatment of Perfluoroalkyl Substances in Groundwater and Liquid Waste

Shangtao Liang, Ph.D; Jack Huang, Ph.D; Hui Lin, Ph.D; Jing Zhou, Ph.D, PE

April, 17, 2019

Outline

- Background
- Bench-scale testing
- Future work
- Q&A

Background

PFAS Properties

Perfluorooctane sulfonate (PFOS)

PFAS Treatment Challenges

Van der Waals and weak ionic forces

Electrostatic forces Hydrophilic functional group

<u>Total organic carbon competes with PFAS on GAC. DOC <3mg/L or lower</u>

Resin is a better choice when TOC is high, but TOC reduces bed life

- <u>Suspended solids</u> will coat resin beads and inhibit mass transfer
- <u>Iron and manganese</u> can be oxidized and cause the same problem as SS, <0.05 mg/L Fe and Mn is recommended
- <u>Oil and grease</u> will coat the beds and inhibit mass transfer. Should not be present.
- <u>Accumulated biomass</u> will short bed life similar to SS.

Electro-coagulation (EC) - Mechanism

Electro-coagulation is a combined process of coagulation, flotation, and electrochemistry

Electro-coagulation (EC) - Applications

Contaminants	Applications	Advantages	Disadvantage
 Heavy metals Oil and grease COD BOD TSS Turbidity Dye Color Sulfide TPH PFAS?? 	 Water containing heavy metals Industrial wastewater Wastewater containing PFAS?? 	 No chemical addition, reduces change of secondary pollution Removes mixed contaminants Produces less sludge than chemical coagulation Simple equipment Complete automation is 	 Regular replacement of anode Cathode passivation Energy consumption can be high for low strength water Sludge management Requires post- treatment before discharge

Potential PFAS Fate during EC

Possible PFAS fate

- 1. Foam fractionation and flotation
- 2. Binding to coagulants and precipitate out
- Electrochemical oxidation/reduction of some PFAS compounds

Bench-scale Testing

(Data courtesy of the University of Georgia)

AECOM

Experiment setup

Specifications	
Reactor	In-house constructed bench reactor
Anode	High purity (>99.9%) metal sheets
Cathode	Stainless steel
Reaction volume	300mL
Electrolyte	20 mM Na ₂ SO ₄
Initial pH	3-5
Stirring method	Air stirring

Sampling and Analytical Methods

AECOM

DoD QSM Version 5.1.1 Table B-15

Electrode Material Selection

Treatment conditions:

- C₀ = 0.5 mM PFOA
- Current: 0.1 A
- Electrolyte: 10 mM NaCl
- Initial pH: 5

Lin, Hui, et al. "Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation." *Environmental science & technology* 49.17 (2015): 10562-10569.

PFOA Adsorption on Zinc Floc

Fourier transform infrared spectrum (FTIR) spectra of solid PFOA and zinc hydroxide flocs before and after PFOA sorption.

Energy Consumption and Linear vs. Branched PFOS

	adsorbents		adaarb		a (mmol		k_2 (g		
Species	Particle size	$\begin{array}{c} \text{BET} \\ (\text{m}^2 \text{ g}^{-1}) \end{array}$	ates	$C_0 (\mathrm{mM})^{\mathrm{a}}$	$q_{\rm m} ({\rm limbor})^{\rm b}$	$t_{\rm equi} ({\rm h})^{\rm c}$	$\frac{\text{mmol}^{-1}}{\text{h}^{-1})^{\text{d}}}$	Refs.	
PAC	< 0.1 mm	812		0.048~0.6	0.67	4	13.9		
GAC	0.9~1.0 mm	712	PFOA	0.048~0.6	0.39	168	0.07		
AI400	0.3~1.2 mm				2.92	168	0.02		
PAC	< 0.1 mm	812		$0.04 \sim 0.5$	1.04	4	5.45	3	
GAC	0.9~1.0 mm	712	PFOS	0.04~0.5	0.37	168	0.07		
AI400	0.3~1.2 mm			0.04~0.5	0.42	168	0.12		
CNTs		97.2~54 7.2	PFOS	0.002~1	0.3~0.4	2	8.08~9.1 3	4	
Chitosan- based MIP ^f			PFOS	0.04~0.5	2.91	32	0.29	5	
Aminated	0.5~0.6 mm	PFOA	0~0.5	2.49	5	1.23	6		
rice husk		0.3~0.0 mm	PFOS	0~0.5	2.65	9	0.22	0	
EC with Zn		10 7	PFOA	0.05~0.8	5.74 ^e	< 0.17	32.67	This	
anode		ode	40./	PFOS	0.05~0.8	$7.69^{\rm e}$	<0.17	32.62	work

XPS Spectra of Zinc Hydroxide Flocs

EC Treatment – Other PFAS Compounds

UGA on-going testing data

Future study

SERDP 1278

ER18-1278: An Electrocoagulation and Electrooxidation Treatment Train to Degrade Perfluoroalkyl Substances and Other Persistent Organic Contaminants in Ground Water

(Team member: Dora Chiang, Ph.D, PE (PI); Jack Huang, Ph.D (Co-PI); Jing Zhou, Ph.D, PE (Co-PI); Shangtao Liang, Ph.D)

Battelle

2019 Bioremediation Symposium | April 15-18 | Baltimore, Maryland

Thank You!

Shangtao Liang, Ph.D.

T 919-961-4750 <u>E shangtao</u>.liang@aecom.com