Development of an Organofluoride Method to Quantify Total Per- and Polyfluoroalkylated Substances (PFAS)

International Symposium on Bioremediation and Sustainable Environmental Technologies, Baltimore, Maryland

April 15-18, 2019

Kavitha Dasu, Ph.D. and Chad Cucksey, M.S. Battelle, Columbus, Ohio

Agenda

- Brief Background
- Study Objective
- Experimental
- Results
 - Comparison of different quantitative methods
 - Investigation of reaction mechanism
- Conclusions

Background

- More than 4000 per- and polyfluoroalkylated substances (PFAS) have been introduced to the global market
- There are several challenges to quantify the total PFAS in environmental samples
- Only a limited number of analytes can be quantified using current targeted analysis
- There is a need for a holistic approach to provide an estimate of the cumulative PFAS by quantifying the total organic fluorine present in environmental samples

Other Total PFAS Methods

Particle Induced Gamma-Ray Emission (PIGE)

- Surface analysis measures atomic fluorine
- Potential advantage easily applied to complex fluoropolymer matrices

Oxidation Techniques:

- Total Organofluoride- Combustion Ion Chromatography (TOF-CIC)
 - Applied for aqueous matrices and blood samples
- Total Oxidizable Precursor Assay
 - Conservative estimate of the total concentration of PFAA precursors
 - More expensive technique Sample needs to be analyzed 2 times for PFAAs before and after oxidation

Ritter et al. 2017; Houtz and Sedlak 2012; Miyake et al. 2007, Yeung et al. 2008, Wagner 2013

Objective

- To develop a rapid potentiometric method to measure free fluoride generated by reductive defluorination of PFAS
- To produce rapid indication of the presence of total PFAS in contaminated samples
- To optimize the technique using neat chemicals followed by application on field samples.
- To understand the defluorination mechanism involved in these reactions.

Hypothesis

Different quantitative methods were tested to quantify the free fluoride formed:

- Ion selective electrode probe(ISE),
- Ion Chromatography,
- Quantitative ¹⁹F Nuclear Magnetic Resonance (NMR), and
- Liquid Chromatography Tandem Mass Spectroscopy (LC-MS/MS) PFAS

- Defluorination Experiments were conducted on PFOA and PFOS
 - Conditions were optimized for the reaction times, catalyst concentration and protic solvents
 - The effect of primary (1°), secondary (2°), and tertiary (3°) protic solvents on the defluorination of PFOA was tested.
- Defluorination confirmation analysis and mechanistic studies were conducted using quantitative ¹⁹F NMR and LC-Time of Flight (ToF)/MS

Experimental – Quality Control

- No Fluoride detected in control experiments
 - Organofluoride control blank (No PFAS)
 - Catalyst Control (No catalyst)
- Fluoride Recovery 95% recovery
- Quantitation of F⁻ in low ppb using ISE and IC

Results - Effect of Protic Solvent on the Defluorination of PFOA

Reaction Time	Protic solvent	% Loss of Fluoride	No. F atoms
30 minutes	1° Protic Solvent	39.9 %	6
30 minutes	2° Protic Solvent	50 %	~8
45 minutes	3° Protic Solvent	39.9 %	6
45 minutes	Alternating Isopropyl alcohol & Methanol	70 %	11

- Addition of 2° protic solvent showed increased defluorination compared to both the 1° and 3° protic solvents
- Alternating addition of both the 1° and 2° protic solvent increased the defluorination to a maximum of 70%.

Comparison of IC and ISE Results

<u>Sample ID</u>	<u>IC Result</u> <u>(µg/mL)</u>	<u>ISE Result</u> <u>(µg/mL)</u>	<u>RPD</u>
Sample 1A 4X	8.08	8.00	1.1%
Sample 1B 4X	8.87	9.00	1.4%
Sample 2A 4X	8.30	7.98	3.9%
Sample 3A 4X	7.79	8.39	7.4%

Calibration Range for F⁻ : IC: 20 µg/L – 2500 µg/L ISE: 250 µg/L - 10000 µg/L

Quantitative ¹⁹F NMR of PFOA

Unreacted PFOA – Peaks 1,2, 3(multiple) - at -80, -118, -121 (4 peaks), and -123 ppm

LC-ToF/MS Analysis

- Non-targeted analysis confirms that 1° protic solvent and 2° protic solvent follows different mechanism
- Many longer chain fragments were observed in 1° protic solvent including PFHxA with a mass balance of 85% using ¹⁹F NMR
- Shorter chain hydrogenated polyfluorinated fragments are formed in 2° protic solvent which explains the loss of these fragments as volatiles and hence poor mass balance

Fluorine Mass Balance

Analytical Method	Description	2° protic solvent	1° protic solvent	Negative Control (No catalyst)
¹⁹ F NMR	Unreacted PFOA	5%	58%	90%
	F ⁻ generated	45%	27%	0%
	Total F mass balance	50%	85%	90%
ISE probe	F ⁻ generated	60%	40%	0%
LC-MS/MS	Unreacted PFOA	2%	33.5%	100%

- Formation of shorter chain fragments explains the loss of these fragments as volatiles and hence poor mass balance in reactions with 2° protic solvents
- The results obtained from ISE, quantitative ¹⁹F NMR and the targeted analysis confirms the percent defluorination
- Similar percent defluorination was obtained using PFOS

Conclusions

- Under the optimized conditions, both the PFOA and PFOS showed >70% defluorination which explains the mechanism of defluorination is consistent
- Separation of inorganic fluoride from the environmental samples before the defluorination reaction is under development
- Further studies:
 - The method performance will be tested using shorter chains and other PFAS precursors
 - Method comparison with other existing total PFAS methods
 - Method demonstration using PFAS contaminated field samples
- This novel total organofluoride method can be used as rapid screening tool to measure the free fluoride generated by the quick reductive defluorination of PFAS in the environmental samples.

Acknowledgements

Battelle Team

- Eric Lucas
 - ¹⁹F NMR Analysis
- Larry Mullins
 - High Resolution MS
- Jonathan Thorn
 - Targeted Analysis

Thank You

Kavitha Dasu, Ph.D. Principal Research Scientist Battelle Columbus, OH dasu@battelle.org

For more information visit our website: www.battelle.org/PFAS

