Chlorinated Solvent Source Area Remediation: Combining Biotic and Abiotic

Fernanda P. Wilson, PhD fpwilson@ftch.com

Michael S. Apgar <u>msapgar@ftch.com</u>
Bruce E. Gillett, CPG <u>begillett@ftch.com</u>

Enhanced Reduction Approaches

Daniel Leigh <u>daniel.leigh@peroxychem.com</u>

John Valkenburg <u>john.valkenburg@peroxychem.com</u>

Outline

- Background
- Site Hydrogeology
- Biotic Remedial History
- Abiotic Remedial Implementation
- Performance Monitoring Results
- Lessons Learned

Background

- Site is located inside a manufacturing plant in southwestern Michigan.
- Contamination was discovered in soil and groundwater.
- Chemicals of concern: Trichloroethylene and its daughter products.

Background

- Studied area located **beneath the active plant**, at the former locations of two degreasers.
- Chlorinated solvents were used to degrease equipment and products as part of the manufacturing.

• Employee-owned water heater manufacturer with over **1,500 employees.**

Site Map

Middleville, MI

Site Timeline

Background

- Chlorinated solvents which are no longer used, leaked from two degreasing pit locations beneath the plant floor.
- Soil: Limited info, but likely greatly reduced by the operation of an SVE system since 2007 (CVOCs and methane).
- GW: The impacted aquifer from
 ~15 to 30 feet below floor level (bfl).

Existing Capture System

- 1999-Present
- Former TCE degreasing Area to be discussed in this presentation
- Concentrations downgradient of Capture system are low and meet site-specific GIS criteria

Hydrogeology

- Fine to medium sand: below the plant floor to approximately 28 feet bfl.
- Silty, fine to medium sand: thickness ranges from
 2-3 feet below the fine to medium sand.
- Dry, clay unit: under the silty, fine to medium sand.

Hydrogeology

Groundwater flows to the Southwest and it is encountered at approximately 15 feet bfl

Most chlorinated volatile organic compound (CVOC) mass is in the lower aquifer zone

Biotic Remedial History: ERD injections 2004-2013

- Both aquifer zones were initially remediated with enhanced reductive dechlorination (ERD) utilizing EVO injections followed by inoculation with *Dehalococcoides*.
- GW monitoring over 10 years showed dramatic reduction (over 98%) of DNAPL mass; but one hot spot persisted in the source area.
- Suspected toxicity limitation for ERD warranted a new strategy for the hot spot in the source area.

Hot Spot in the Source area - TCE Plume

Need to Address the hot spot in the source area...

Main Objective

Promote remediation of the Hot Spot in the Source Area by augmenting the existing biotic treatment with injections to establish abiotic pathways for CVOC reduction.

Abiotic Remedial Implementation

- **July 2015**: abiotic direct injection event
- Product selected: EHC-L reagent

Biotic Pathway (Step-Wise Reductive Dechlorination)

Main Abiotic Pathway (β-Elimination)

Abiotic Remedial Implementation

ELS 25% microemulsion

Structure of Lecithin

<u>Injection Mix:</u> lecithin, ferrous sulfate, and potable water solution, buffered with potassium bicarbonate

- **Lecithin**: organic carbon to support biodegradation and deepen the reducing environment
- **Ferrous sulfate**: form iron sulfide minerals to establish an abiotic reductive pathway

Abiotic Injection

Abiotic Injection

- 226 gallons of the injection mixture was used
- 6 direct-push locations surrounding TW-17 (Hot Spot)

200,000 ug/L 50,000 ug/L 5,000 ug/L

JULY 2015

Abiotic Remedial Implementation

Preparation of the Injection Mixture

Abiotic Remedial Implementation

Direct High Pressure Injection

ERD conditions over the years of the treatment

TW-17

Collection	TOC	Alkalinity, Total	Chloride	N, Nitrate	Phosphorus, T.	Sulfate	Ferrous Iron	Diss. Oxygen	Eh	рН	Temperature
Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(s.u.)	(°C)
08/18/15								1.3	110	6.4	20.4
10/29/15	110					440		0.1	91	6.4	17.7
01/19/16	56					85		0.2	84	6.4	17.4
07/18/16	27	440	270	0.05 U	0.05 U	27		0.2	63	6.5	17.8
01/03/17	49					6.0		0.2	36	6.2	17.2
04/26/17	43						3.0	0.2	-98	6.2	17.8
07/18/17	27.4	370	263	0.05 U		16.1		0.2	140	6.4	17.3
01/23/18	42.7					10.5		0.2	170	6.3	17.0
04/18/18	73.8							0.3	140	6.2	16.7
07/18/18	84.5	344	303	0.05 U		11.5		0.1	100	6.5	17.0
10/18/18	49.2							0.3	110	6.3	16.0
01/28/19	47.6					12.1		0.2	120	6.3	17.6

Proof of Abiotic Pathway?

Biotic Pathway (Step-Wise Reductive Dechlorination)

Main Abiotic Pathway (β-Elimination)

- Acetylene was first measured and detected in 2017, but concentrations were low thereafter very labile or too late?
- Magnetic Susceptibility and X-Ray Diffraction analyses in 2018: Iron sulfides and oxides (Magnetite, Mackinawite, Pyrite and Green Rust) were not detected/different than background – looking in the wrong place?

Proof of Abiotic Pathway?

- TCE → cDCE : primarily biological;
- cDCE → VC : Some VC is produced but not the stoichiometric equivalent of DCE reduced. Some other
 process (assumed to be abiotic degradation*) is occurring.

*dilution and dispersion or rapid degradation of the VC

Summary of Results

- Abiotic injections from July 2015 addressed the stagnant high concentration of TCE at the Source Area.
- Detection of acetylene in 2017 and current detections of cDCE and VC, indicate that both abiotic and biotic reductive pathways were/are relevant for TCE degradation in the Hot Spot Source Area.
- Reduction of TCE in the Hot Spot Source Area (160,000 to 4,500 μg/L)
 has occurred since 2015 with no significant alteration of pH.

Summary of Results

SOURCE AREA REMEDIATION

PRESS ROOM - TCE

Final Thoughts – Why it Worked?

- Extremely high concentrations at source area might have been inhibiting biological ERD
- Efforts to enhance both biotic and abiotic reductive pathways were relevant for TCE degradation in the Hot Spot Source Area.
- Mechanical "pushing" (flushing) during injection may have helped promote ERD degradation

Final Thoughts – Lessons Learned

- Doing the same thing over and over won't give you different results
- Brainstorm with people from different areas of expertise
- Take advantage of your resources/vendors
- Every site is unique

Acknowledgments

Michael S. Apgar <u>msapgar@ftch.com</u>
Bruce E. Gillett, CPG <u>begillett@ftch.com</u>
Steve Macdonald, PE
Mike Colvin, CPG
Mike Ingersoll

Daniel Leigh <u>daniel.leigh@peroxychem.com</u>
John Valkenburg <u>john.valkenburg@peroxychem.com</u>

Thank you

Fernanda P. Wilson, PhD fpwilson@ftch.com

