

The Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies

Removal of Tetrachloroethylene (PCE) from Groundwater by Coupled nZVI-LDH Composite and PCE-Degrading Microbial Consortium

Qing Wang

Assistant professor, qwang@issas.ac.cn Institute of Soil Science, Chinese Academy of Sciences April 16, 2019

Contents

Introduction

- **PCE** biodegradation by bacteria
- **PCE degradation by nZVI-LDH**
- Coupled degradation of PCE by bacteria and nZVI-LDH
- **Conclusions**

1. Introduction

The exposure of chlorinated organic can cause threats to human beings

• Carcinogenic and cytotoxic effects that can cause severe damage to central nervous system, endocrine system and immune system

• Listed as one of the priority pollutants by the US Environmental Protection Agency

Soil Pollution Prevention and Control

1. Introduction

Remediation technology

Bioremediation

Many anaerobic bacteria reductively dechlorinate PCE or TCE to vinyl chloride and ethene (e.g., *Desulfuromonas*, *Sulfurospirillum multivorans*, and *Dehalobacter*).

The challenges of bioremediation:

- Low dechlorination rates and long clean up times;
- Inefficient supply of suitable electron donors to the dechlorinating bacteria;
- Toxicity of high PCE orTCE concentrations to dechlorinating bacteria.

Need to combine other technology with various bacteria to improve the removal efficiency of chlorinated-solvent contaminated groundwater

1. Introduction

Remediation technology

LDHs are widely used as catalysts, sorbents, due to the layered structure, high anionic exchange capability, large surface area, high porosity and thermal stability

- A combined nZVI-LDH+bacteria system for PCE remediation will result in more removal efficiency and benign end products because of microbial actions.
- The degradation kinetics and efficiency of PCE by nZVI-LDH and acclimated microbial consortium were investigated

Composition of the acclimated microbial consortium

the acclimated microbial consortium mainly consisting of *Clostridium sp.* FCB45 (44.49%), *Methylotrophic bacterium* RS X3 (17.34%), *Rhodocyclales bacterium* TP139 (7.39%), *Desulfovibrio* (2.61%), and *Treponema* (0.85%) at species level;

□ 0.5-2.5 mg/L PCE could be completely biodegradation within four days.

Effect of pH and temperature on PCE biodegradation

- □ The highest PCE biodegradation rate was observed at temperature of 30°C, in neutral pH.
- □ The acclimated microbial consortium had a potential for in situ PCE bioremediation.

Effect of co-substrate on PCE biodegradation

- □ The biodegradation rate: Yeast extract>Glucose≈Methanol>Sodium lactate>No co-substrates>Ethanol;
- The enhanced biodegradation process followed the first-order reaction kinetics.

Co-substrates	First order kinetic model	R ²	K	$T_{1/2}$ (d)
Methanol	$y = 1.39 * e^{-\frac{x}{7.02}} - 0.682$	0.972	0.142	1.138
Ethanol	$y = 4.38 * e^{-\frac{x}{27.23}} - 3.67$	0.928	0.037	1.338
Glucose	$y = 1.62 * e^{-\frac{x}{6.875}} - 0.792$	0.963	0.145	1.555
Yeast extract	$y = 1.11 * e^{-\frac{x}{3.055}} - 0.223$	0.988	0.327	1.309
Sodium lactate	$v = 1.895 * e^{-\frac{x}{8.906}} - 1.106$	0.955	0.112	1.474
No co-substrates	$y = 1.746 * e^{-\frac{x}{10.155}} - 1.061$	0.884	0.098	1.137

Effect of rhamnolipid and tween 80 on PCE biodegradation

■ When the rhamnolipid and tween 80 were at 10 mg/L and 50 mg/L, the PCE biodegradation efficiency was enhanced to 73% and 67%, respectively.

Layered double hydroxide (LDH) modified nanoscale zero-valent iron (nZVI-LDH) was prepared by co-precipitation method with nZVI as the core and LDH as the shell.

- □ The removal efficiency of PCE by nZVI and nZVI-LDH were 81.5% and 96.3% respectively after 24 h.
- □ The kinetic analysis demonstrated that PCE degradation follows pseudo first order kinetic behavior.

- When the initial PCE concentrations increased, more Fe⁰ would be oxidized and would lose its activity leading to a decrease in the removal rate;
- The efficiency of PCE degradation decreased with the increase in pH, indicating that nZVI-LDH could remove PCE in groundwater more effectively at acidic pH values than alkali pH values.

- PCE removal as obviously promoted in the presence of co-existing Cu²⁺ ions, while inhibited in the presence of co-existing Ca²⁺ and Mg²⁺ ions.
- □ The performance of PCE degradation was inhibited slightly by the common groundwater anions;

4 Coupled degradation of PCE by bacteria and nZVI-LDH

- For the combined nZVI-LDH+bacteria system, the removal rate of PCE was higher than that of PCE-degrading consortium;
- □ The degradation of PCE followed the pseudo-first order reaction kinetics, the degradation rate constant was 0.16 and 0.55 d⁻¹, respectively.

4 Coupled degradation of PCE by bacteria and nZVI-LDH

nZVI-LDH+microorganism

PCE was degraded by nZVI-LDH to lower concentration at the initial stage, which was conducive to the growth of microorganisms. In addition, the addition of nZVI-LDH can create reducing conditions and produce hydrogen as electron donor, enhancing the PCE biodegradation efficiency.

5. Conclusions

■ The enriched PCE-degrading consortium consisted of 44.49% *Clostridium* and other potential PCE degraders; 0.5-2.5 mg/L PCE could be completely biodegradation within four days.

The optimal temperature and pH for PCE biodegradation were 30° C and pH 7; When the rhamnolipid and tween 80 were at 10 mg/L and 50 mg/L, the PCE biodegradation efficiency was enhanced to 73% and 67%, respectively.

■ The PCE degradation by nZVI-LDH could be well described by pseudo first order model; The degradation efficiency of PCE decreased with the initial pH increased;

■ The presence of Cu²⁺ improved degradation efficiency of PCE by nZVI-LDH due to its role as a catalyst or medium of charge transfer during reduction;

Enhanced biodegradation of PCE by coupling nZVI-LDH and PCE-degrading consortium was observed.

Welcome to Nanjing, China !/ Thanks for your attention