PARSONS

Enhanced In-Situ Bioremediation and Solar-Irrigated Phytoremediation to Treat a High Salinity PCE Plume

Jim Leu, Dan Griffiths, Linda McGlochlin, Michael Schulman, and Kevin Garon

April 2019

Agenda

- Site Background
- Pilot Studies
- Full-scale Remedy Implementations
- Lessons Learned/Summary

Site Map

- Shallow Water Table
 - 8 12 ft bgs
- High TDS
 - 1,000 2,000 mg/L
 - Salty
- Tidal Effect
- Main COCs
 - CFCs
 - CCl₄
 - Organo-lead
 - 1,2-DCA
 - PCE

- Surficial Aquifer
- Upper Aquifer
- Lower Aquifer

PCE Concentrations – Plume 3 Surficial Aquifer

- Plume 1
- Plume 2
- Plume 3

Pilot Test: Phytoremediation

- Plant Tissue Sampling and Analyses
 - Collected 36 eucalyptus and willow tree tissue samples
 - Data indicated PCE uptake occurs in eucalyptus trees, but willow uptake may require further study

Eucalyptus globulus

Tree core sample collection

Wood analyzed for VOCs

Pilot Test: Phytoremediation

Pilot Test: Enhanced Bioremediation

Adding emulsified oil in source area

Pilot Test Results

Full Scale: Remedy Selection – Plume 3 Surficial Aquifer

PARSONS

10

Full Scale: Remedy Selection

Substrate/Bioaugmentation Injection

- 15 injection wells
 - Treatment Area C 10 injection wells
 - Treatment Area D 5 injection wells
- Substrate Injection 37,770 gallons
 - Newman Zone HRO 1,860 gallons
 - Newman Zone QR 310 gallons
 - Neutral Zone pH Buffer 1,350 gallons
 - Makeup water 34,250 gallons (MW-31)
- Bioaugmentation Injection
 - KB-1 Culture 1 liter/well
 - Makeup water 1 gallon (MW-31)
 - Push water 30 gallons (MW-31)
 - Anaerobic conditions 30 days later
 - D0 < 1 mg/L</p>
 - Negative ORP
 - Neutral pH

Totes of Substrate

Injection Trailer and Manifold

Well Injection

Phytoremediation Layout

- Two solar-powered irrigation stations
 - Wetland irrigation station
 - Upland irrigation station
- Seven zones phytoremediation
 - Wetland 2 zones of eucalyptus trees
 1 zone of willow trees
 - Upland 4 zones of eucalyptus trees

Full Scale: Phytoremediation

Five type of eucalyptus trees planted

- Salt tolerant species
- Propagated from seeds by Cal Poly
- Delivered to the site for planting

Upland Debris Area

Planting Spec

- Grid 15ft x 15ft
- Depth 10 ft Upland

3 ft for Wetland

- Diameter 1.5 ft
- Import Soil with 10% Municipal Compost

Solar-Powered Irrigation Station

Wetland Irrigation Station and Drip Emitters

- Upland Irrigation Station
 - 1,100 gal storage tank MW-32 groundwater
 - Power submersible pump in MW-32 and transfer pump to irrigation network
- Wetland Irrigation Station
 - 2,600 gal storage tank import water due to salty GW
 - Power transfer pump to irrigation network

Upland Irrigation Station Setup

Phytoremediation 2015 - 2018

EISB Performance Monitoring Well Results

PARSONS

Phytoremediation Performance Monitoring Well Results

MNA Performance Monitoring Well Results

EISB Injection Challenges/Lessons Learned

- Slower than expected injection rates resulted in minor substrate spoilage and lower injection efficiency
 - Shallow groundwater level
 - Less permeable
- Expand manifold to maintain minimal (~4 gpm) injection rate required for injection pump to maintain prime.
- High pressure direct injection

Phytoremediation Challenges/Lessons Learned

- Hand watering required weekly before full-scale implementation
- More effort involved in weeding and mowing than anticipated
- Salinity of one onsite well was high elected to truck in water
- Salt tolerant eucalyptus trees E. Robusta and E. Occidentalis
- Solar panel attracts vandalism
- Irrigation stops after two years of operation
- High tree survival rate

- Successfully applied pilot studies to demonstrate sustainable technologies worked
- Phytoremediation was successfully installed and enhanced by solar power and site groundwater irrigation system
- High tree survival rate
- EISB successfully implemented with lessons learned
- COCs reduced significantly in treatment zone wells
- Microbes and volatile fatty acid concentrations still high in certain wells 3 years after the injection

Enhanced In-Situ Bioremediation and Solar-Irrigated Phytoremediation to Treat a Salty PCE Plume