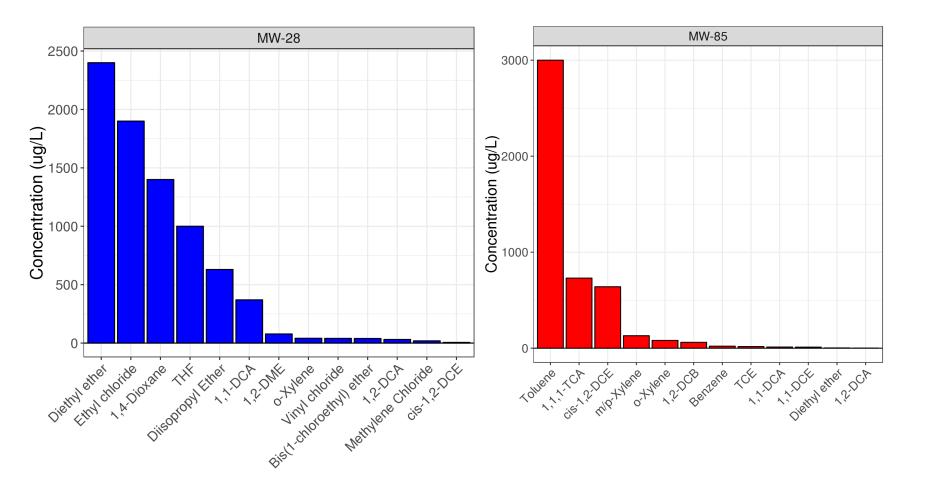

Aerobic Biodegradation of Aromatic, Chlorinated Aliphatic, and Ether Contaminants by *Pseudonocardia sp.* strain ENV478 and Native Populations

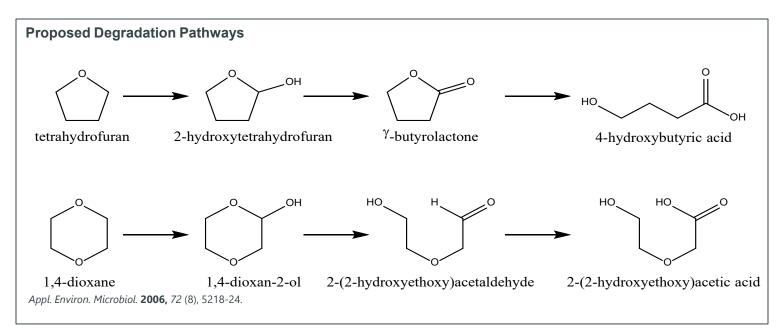
Claudia Walecka-Hutchison, M.S., Ph.D.

Matt Whaley, Todd Tambling, Michael LaFramboise, and Tim King (The Dow Chemical Company) Paul Hatzinger and Simon Vainberg (APTIM)

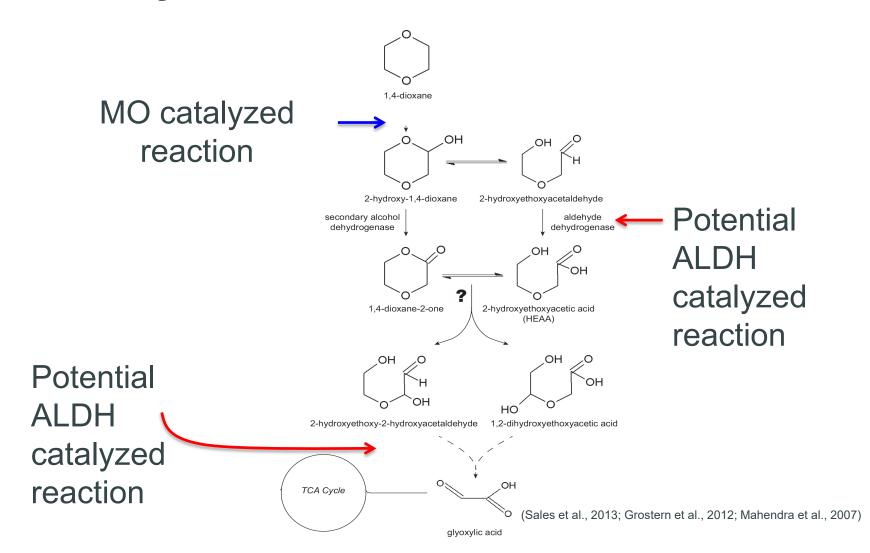

Background

- Superfund site in NE US
- Decades of remedial efforts
 - ppt low ppm aromatics, cVOCs, ethers remaining
- Geology
 - MW-28 –competent bedrock (32-42 ft bgs)
 - MW-85 overburden (25-29 ft bgs), weathered bedrock (29-30 ft bgs)
 - Wells are not hydraulically connected
- Geochemistry
 - pH: 5.8 6
 - DO: 0.24 0.5 mg/L
 - ORP: -36.6m to -78 mV

COCs of interest


COCs differ between MW-28 and MW-85

Objectives


Evaluate potential bioremediation options

- Aerobic biostimulation & bioaugmentation
- THF present as growth substrate for 1,4-DX degradation
- Evaluate biodegradation of site COCs using *Pseudonocardia sp.* strain ENV478
 - Co-metabolic ether degrader (1,4-DX, BCEE, MTBE)
 - Degradation of <u>aromatics and cVOCs_not previously tested</u>

CENSUS (qPCR) Data MW-28

Functional Gene	Abbreviation	cells/mL	Percentile (%)
Total Eubacteria	EBAC	1.83 x 10 ⁶	70
Dioxane/THF Monooxygenase	DXMO	6.00 x 10 ⁻¹ (J)	
Aldehyde Dehydrogenase	ALDH	<5.00	
Propane Monooxygenase	PPO	7.17 x 10 ¹	
Soluble Methane Monooxygenase	SMMO	9.86 x 10 ²	38
Particulate Methane Monooxygenase	PMMO	<5.00	
Phenol Hydroxylase	PHE	3.71 x 10 ³	72
Toluene-2-Monooxygenase	RDEG	4.93 x 10 ³	82
Toluene-3,4-Monooxygenase	RMO	2.27 x 10 ³	75

- High levels of bacteria and functional gene expression measured
- Estimable amounts of DXMO suggest some dioxane/THF degradation may be ongoing

CENSUS (qPCR) Data *MW-85*

Analyte	Abbreviation	cells/mL	Percentile (%)
Total Eubacteria	EBAC	1.32 x 10 ⁶	65
Dioxane/THF Monooxygenase	DXMO	<4.70	
Aldehyde Dehydrogenase	ALDH	<4.70	
Propane Monooxygenase	PPO	9.40	
Soluble Methane Monooxygenase	SMMO	9.86 x 10 ²	22
Particulate Methane Monooxygenase	PMMO	<5.00	
Phenol Hydroxylase	PHE	3.71 x 10 ³	65
Toluene-2-Monooxygenase	RDEG	4.93 x 10 ³	62
Toluene-3,4-Monooxygenase	RMO	2.27 x 10 ³	66

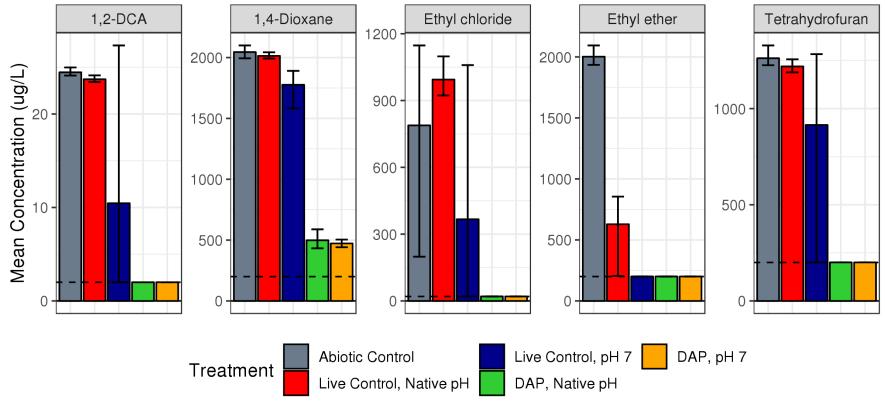
• High levels of bacteria and functional gene expression were measured

Treatments

Treatment	Amendment	Amendment Amount	рН		
Biostimulation					
Abiotic Control	HgCl ₂	250 mg/L	Native		
Live Control			Native, 7		
DAP	Diammonium phosphate*	9.6 mg/L	Native,7		
DAP + propane	Diammonium phosphate* Propane	9.6 mg/L 3 mL @ 1 atm	Native,7		
Bioaugmentation					
Groundwater	ENV478	5 mL	Native		
Basal Salt Medium (BSM)	ENV478 + COCs	5 mL	7		

Microcosms prepared in triplicate

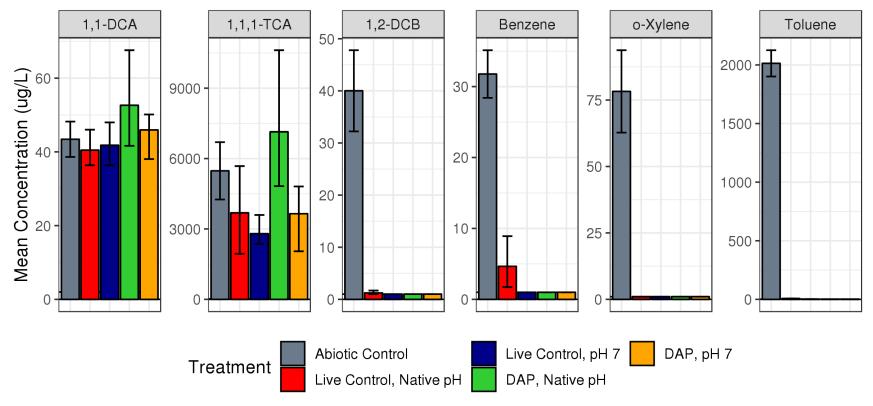
All treatments except BSM contain 125 mL groundwater from MW-28 or MW-85


*Diammonium phosphate (DAP) based on C estimate from COCs

BSM treatments to differentiate degradation by ENV478 from native organisms

Biostimulation: MW-28

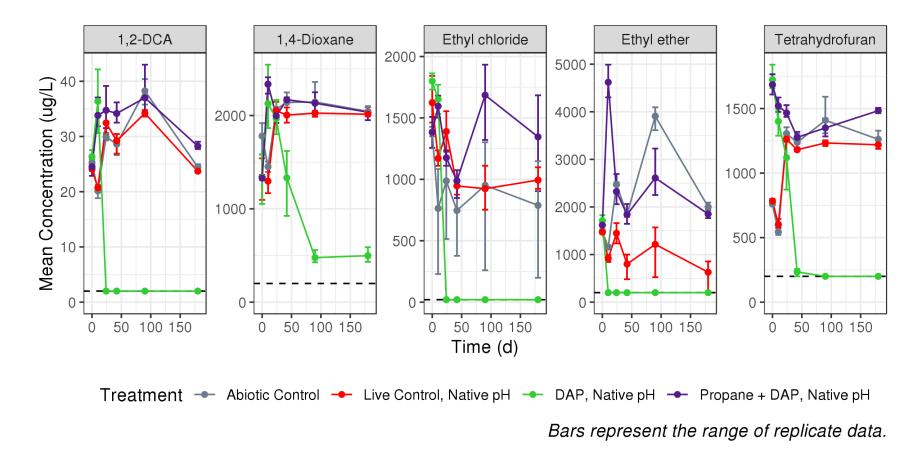
Native pH = 6.0


Bars represent the range of replicate data. Data collected at 180 d.

- Oxygenation of groundwater is not sufficient for degradation
- Addition of N&P stimulates biodegradation
- Increasing pH helped accelerate removal
- 1,4-DX degradation stalled

Biostimulation: MW-85

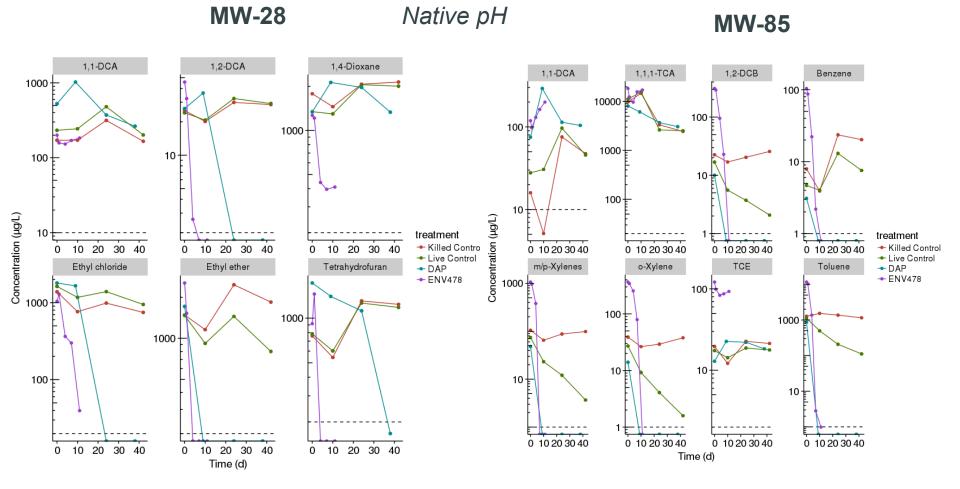
Native pH = 5.8


Bars represent the range of replicate data. Data collected at 180 d.

- Oxygenation of groundwater was sufficient for degradation of aromatics
- Amendment with nutrients and pH adjustment accelerated degradation
- No significant degradation of 1,1-DCA and 1,1,1-TCA

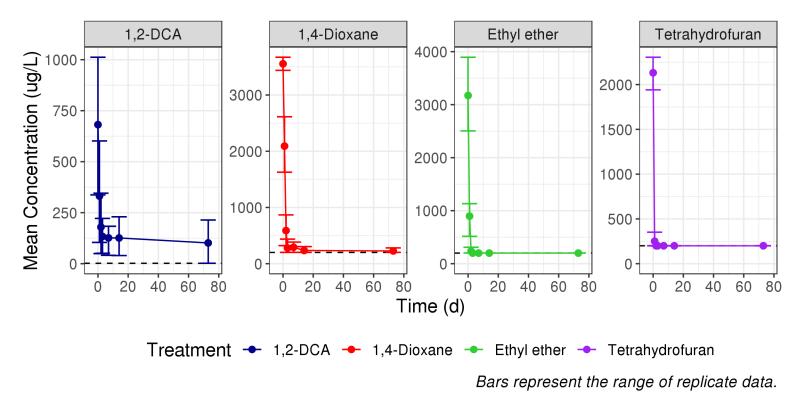
Biostimulation: Effect of Propane

Native pH = 6.0 *MW-28*

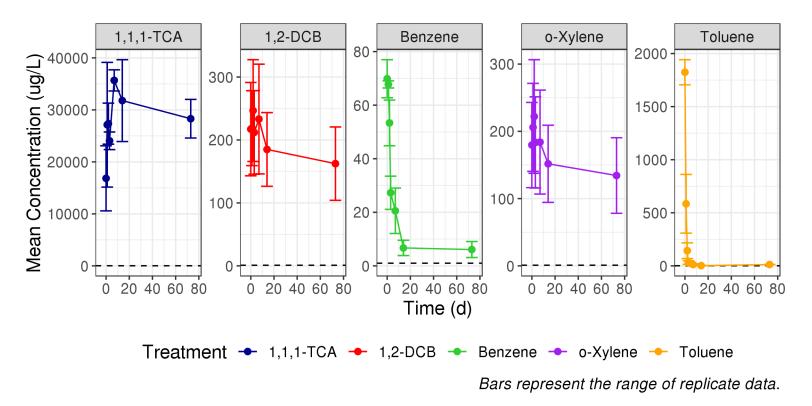


Propane amendment inhibited degradation of COCs → preferential C source?

DOW RESTRICTED


Bioaugmentation Experiments

- Addition of ENV478 resulted in faster degradation of ethers, ethyl chloride & 1,2-DCA than DAP; aromatics showed similar removal to DAP
- No significant degradation of 1,1-DCA & 1,1,1-TCA observed


Bioaugmentation with ENV478 *MW-28 Simulated Sample (BSM)*

- Rapid degradation of all ethers observed
- Initial rapid degradation of 1,2-DCA stalled after consumption of ethers → co-metabolic?

Bioaugmentation with ENV478 *MW-85 Simulated Sample (BSM)*

- ENV478 rapidly degraded benzene and toluene
- No significant degradation for other COCs

Summary

- Lack of nutrients & low pH are limiting aerobic biodegradation
- >95% removal of THF, diethyl ether, ethyl chloride and 1,2-DCA after biostimulation in less than 50 days while 1,4-DX showed about 75% removal
- Similarly non-detectable levels of benzene, toluene, xylene, and 1,2-DCB were observed under biostimulating conditions
- Treatments with propane to induce native co-metabolic degradation
 were unsuccessful
- ENV478 rapidly degraded all ethers within 2 weeks
- ENV478 also degraded benzene, toluene to ND & 1,2 DCA by ~ 85%
- 1,1-DCA & 1,1,1-TCA were persistent under all conditions tested

Thank You

Claudia Walecka-Hutchison, M.S., Ph.D. EH&S Remediation Manager Environmental Remediation and Restoration The Dow Chemical Company cwaleckahutchison@dow.com