

DOWNGRADIENT CHLORINATED ETHENE BULK ATTENUATION RATES AND TOTAL REMOVAL

Jason Tillotson, Jennifer Martin Tilton, Matt Schnobrich

Battelle Fifth International Symposium on Bioremediation and Sustainable Technologies April 16, 2019 – Baltimore, Maryland

Agenda

- Introduction
- Rate and Extent of Removal Calculations
- ERD Database
- Degradation Rates
- Overall Removal
- Conclusions

Introduction

- Electron donor addition
 - Enhances CVOC reductive dechlorination
 - Most effective at reducing parent compounds; daughter products may persist
 - Injection strategies include source area injections and downgradient flux control (i.e., PRBs)
- Often achieve good degradation rates in injection areas
 - Good carbon distribution
 - Achieve optimal ERD conditions
- Increased focus on limiting concentrations downgradient

What concentration changes are we seeing downgradient of injection areas?

Downgradient CVOC Removal

- Evaluate bulk attenuation rates
 - Assumed first-order kinetics

 $ln[C(t)] = ln[C_0] + k_1 * t$

- PCE, TCE, cis-DCE, VC, ΣCI rates calculated
- $-\Sigma CI =$ measure of total organic chlorine

 $\Sigma CI = 4*[PCE]+3*[TCE]+2*[DCE]+1*[VC]$

- Trends identified using modified Mann-Kendall
- Visual Basic program allowed for multiple rates (e.g., cis ↑ then ↓)
- Calculate extent of removal (C/C₀)
- Compare with distance, geochemical conditions, etc.
- Compare with injection area wells

ERD Database

- 34 ERD Sites
 - Wells with >900 days (~2.5 year) monitoring
 - 218 downgradient wells
 - Multiple substrate types

CVOC Removal Rates

- Decreasing/Probably Decreasing trends
 - Identified in at least 70% of wells
 - More likely in parent compounds (81% PCE, TCE)
 - Wells >100 ft less likely to have identified trend
- Increasing/Probably Increasing trends
 - More likely in daughter products compounds (6% TCE vs 24% VC)
 - Increasing trends in parent compounds generally small

(yr-1)	Count	Min	Median	Мах	
PCE	108	0.22	1.50	42.5	
TCE	157	0.11	1.17	13.5	
cis-1,2-DCE	157	0.15	1.42	15.7	
VC	121	0.18	1.57	18.3	
ΣCI	183	0.07	1.06	15.2	

k (yr¹)

0.1

PCE

TCE

cis-DCE

VC

Total Org Cl

90th percentile 75th percentile 50th percentile

25th percentile

10th percentile

Removal Rates vs Distance

Higher degradation rates closer to injections

- More pronounced in parent compounds
- PCE: 30% of wells 0-50 ft have higher rate than all wells >100 ft
- Rates much lower at >250 ft

Degradation Phase

- Beginning of Decreasing trend
 - Generally increases with decreasing chlorination, distance downgradient
- Decreasing trend duration
 - Median ~ 2-2.5 years
 - Slightly lower durations for daughter products
- Post-Degradation Phase
 - Most wells show stable/no trend
 - Only 10-15% of wells experienced increasing trend during post-degradation phase

Trends in wells during postdegradation phase

ARCADIS Design & Consultancy for natural and built assets

Downgradient vs Injection Area

Downgradient

Injection Area

ARCADIS Design & Consultancy for natural and built assets

ARCADIS Design & Consultancy for natural and built assets

Overall Removal

3

Overall Removal vs Distance

ΣCI: Best removal 0-50 feet, • decreases with distance

Overall Removal vs CH₄

- High PCE, TCE reduction = high CH₄
- Daughter products more variable
 - High CH4 → high reduction to high production

Overall Removal vs TOC

- Smaller relationship between high TOC, high reduction
 - TOC <10 mg/L → max 1-2 OoMs reduction
 - TOC >10 mg/L → max 2-4 OoMs reduction

Conclusions

- ERD positively impacts downgradient wells
 - Degradation rates identified in 70-80% of wells, more likely with parent compounds
 - Generally higher rates closer to injection area
 - Median degradation phase 2 2.5 years
- Compared to injection area
 - Lower PCE, TCE degradation rates (similar for daughter products)
 - Longer time to start degradation
- Overall Removal
 - 40-50% of wells experienced >1 OoM PCE, TCE removal; ~25% experienced >2 OoMs removal
 - ~Half of wells experienced cis-1,2-DCE, VC, increases
 - ΣCI good measurement for overall removal
- Geochemical parameters
 - Higher removal = $CH_4 > 1 mg/L$
 - Higher removal = TOC >10 mg/L

Questions?

0

е

JASON TILLOTSON

Project Engineer Raleigh, North Carolina

- 919.328.5807
 - Jason.tillotson@arcadis.com

Co-Authors Jennifer Martin Tilton Matt Schnobrich

Acknowledgements Ki Young Cha **Robert Borden**

© Arcadis 2019

Design & Consultancy for natural and

Technical Knowledge

TISR[™]

Situ

Innovation

(Thermal In-(Well-Based Mineral Traps) Sustainable Remediation)

Oleophilic Bio Barriers (OBBs) (for Hydrocarbon Sheens)

01 May 2019