Bioelectrochemical Systems for In Situ Treatment of Groundwater Contaminated by Hexavalent Chromium

<u>G. Beretta</u>, A. Mastorgio, L. Pedrali S. Saponaro, E. Sezenna

Politecnico di Milano – Department of Environmental and Civil Engineering. gabriele.beretta@polimi.it

DIPARTIMENTO DI INGEGNERIA CIVILE E AMBIENTALE Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies. April 15-18, 2019 | Baltimore, Maryland

Hexavalent Chromium pollution

Environmental and economic sustainability → technologies based on biological mechanisms.

Bioremediation strategies

Bioelectrochemical remediation

BioElectrochemical Systems (BESs)

BESs include a set of technologies that exploit the ability of certain microorganisms to use the electrodes as electrons acceptors/donors and to catalyze redox reactions in order to produce a flow of electrons.

In BES applied to the removal of metals, cathode is used as an electron donor to reduce metallic ions present in oxidized form.

2° Step: Bioelectrochemical Cr(VI) reduction in polarized system

1° Step: Electroactive biofilm development in MFC

MFC Composition	
Electrode	Graphite cilinder (18,85 cm ²) linked by stainless steel cable
Substrate	Sodium Acetate (0,1 g/L)
Solution	Mineral medium
Inoculum	Anaerobic digester sludge

Monitoring and evaluation in MFC

Continuous recording of the circulating currents

Microbial analysis: 16S rRNA gene sequencing

Current produced by electroactive biofilm (MFC)

Current production correlated to biological oxidation of acetate \rightarrow development of an *electroactive biofilm*

Characterization of the enriched microbial community in MFC

- Others
- Deinococcales
- Victivallales
- Flavobacteriales
- Desulfuromonadales
- Methanomicrobiales
- Caulobacterales
- Sphingobacteriales
- Ervsipelotrichales
- Caldisericales
- Xanthomonadales
- Rhodocyclales
- Solirubrobacterales
- Rhizobiales
- Pseudomonadales Spirochaetales
- Burkholderiales

2° Step: Bioelectrochemical Cr(VI) reduction in polarized system

Polarized system and Control Composition	
Electrode	Cathode with electroactive biofilm
Carbonium source	HCO ₃ - (g/L)
Solution	Mineral medium and inoculum (80-20% $^{\rm v}/_{\rm v})$
Pollutant	Hexavalent Chromium (1 mg/L)
Sperimental condition	 Polarized system (POL - 0.5 V) Open Circuit (OC) Abiotic (ABI - 0.5 v)

Monitoring and evaluation

Analytical determination Cr(VI) dissolved

Microbial analysis: 16S rRNA gene sequencing

Trend of hexavalent chromium concentration

Characterization of the enriched microbial community

- Others
- Methanomicrobiales
- Bacillales
- Aminicenantes_genera_incertae_sedis
- Candidatus Cloacamonas
- Victivallales
- Gemmatimonadales
- Deinococcales
- Caldisericales
- Subdivision3_genera_incertae_sedis
- Syntrophobacterales
- Pseudomonadales
- Solirubrobacterales
- Hydrogenophilales
- Flavobacteriales
- Rhizobiales
- Bacteroidales
- Burkholderiales

Characterization of the enriched microbial community

Conclusions

- The acclimatization phase in the MFC has made it possible to enhance the development of an electroactive biofilm.
- The **biocatode** with an imposed potential of -0.5 V (Ag / AgCl) reduced Cr(VI) dissolved in solution with a **higher efficiency** than the controls.
- •The selection of the **electroactive cathodic community** has proved **essential** for the efficient removal of hexavalent chromium.
- Although **bioelectrochemical treatment** needs further studies also on a pilot scale, it can represent an **innovative** and **sustainable** approach for the removal of contaminants from groundwater.

Thank you for your attention

DIPARTIMENTO DI INGEGNERIA CIVILE E AMBIENTALE Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies. April 15-18, 2019 | Baltimore, Maryland