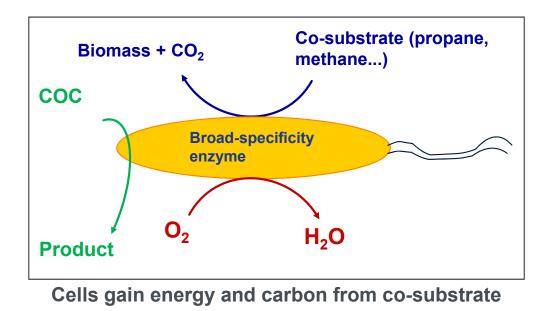
EVALUATION OF A SUSTAINABLE BIOBARRIER TO TREAT LARGE DILUTE CHLORINATED VOC GROUNDWATER PLUMES

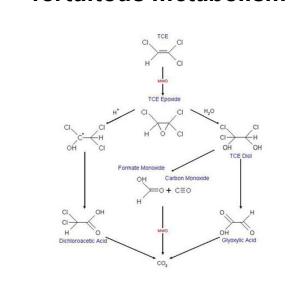
David R. Lippincott, P.G.

Collaborators: Graig M. Lavorgna, Rachael T. Rezes, Paul G. Koster van Groos (ATPIM), and James F. Begley (MT Environmental Restoration)

Battelle: Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies. 2019. Baltimore, Maryland

BACKGROUND


- ESTCP-funded project (ER-201629)
- Treatment/control of large dilute plumes remains a challenge
- Current approaches can have high capital and O&M costs
- Cometabolism shows promise:
 - Indigenous organisms grow aerobically on supplied substrate (propane, methane, etc.), rather than the trace contaminant
 - > Good degradation kinetics
 - > Ability to treat contaminants to parts-per-trillion levels



COMETABOLISM

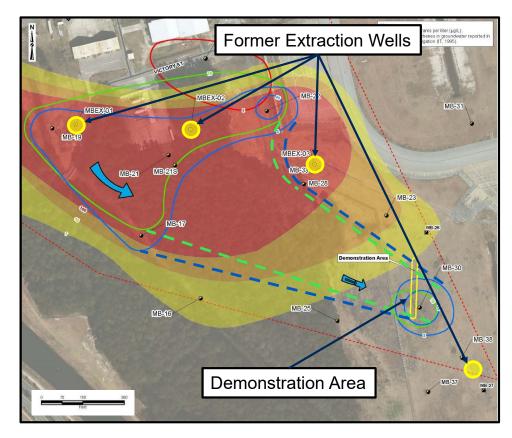
Metabolism of an organic substrate by a microorganism that is unable to use that compound as a source of energy or an essential nutrient element (Alexander, 1967)

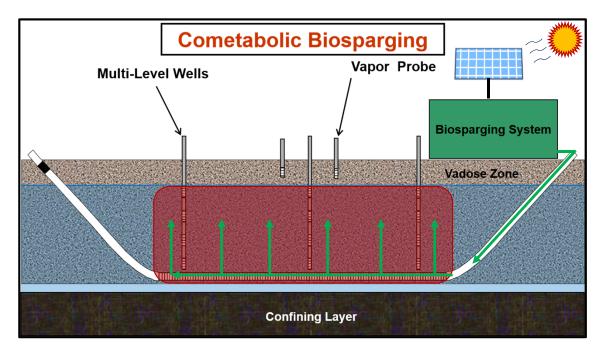
"fortuitous metabolism"

Source: https://microbewiki.kenyon.edu/

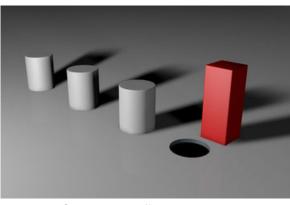
DEMONSTRATION SITE

Former Myrtle Beach Air Force Base, SC
Building 324 Plume (SWMU 40)



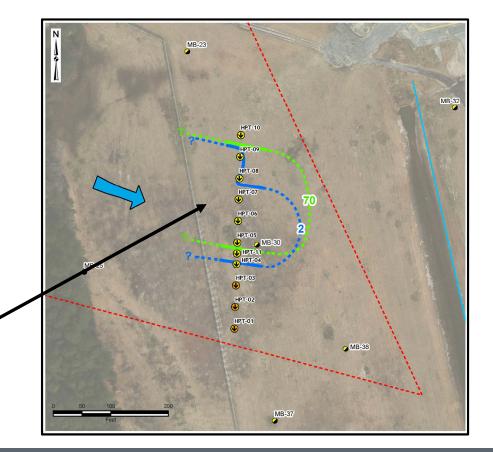

CHLORINATED ETHENE DISTRIBUTION

- 1994: Plume >2,000' long and up to 1,000' wide
- P&T from 1995 to 2006
 - > Reached asymptotic levels
 - > MNA current remedy
- Current plume dimensions less defined
- Demonstration area:
 - > cis-DCE and vinyl chloride plume ~210' wide
 - > No TCE above MCLs



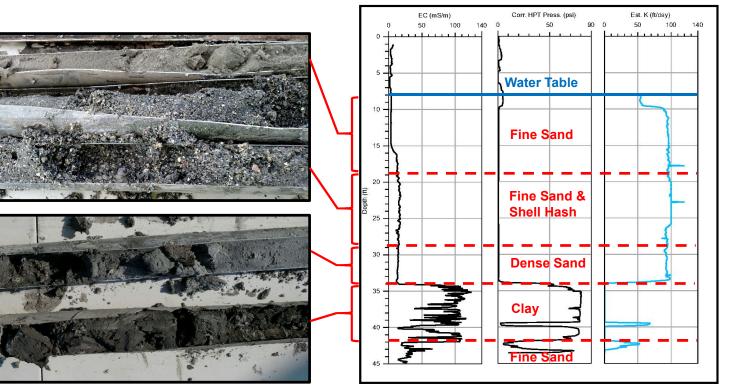
ORIGINAL CONCEPT

- ✓ Cometabolic biosparging
- Off-the-grid (solar + gas pressures)
- X Horizontal sparge wells



Source: https://pixabay.com

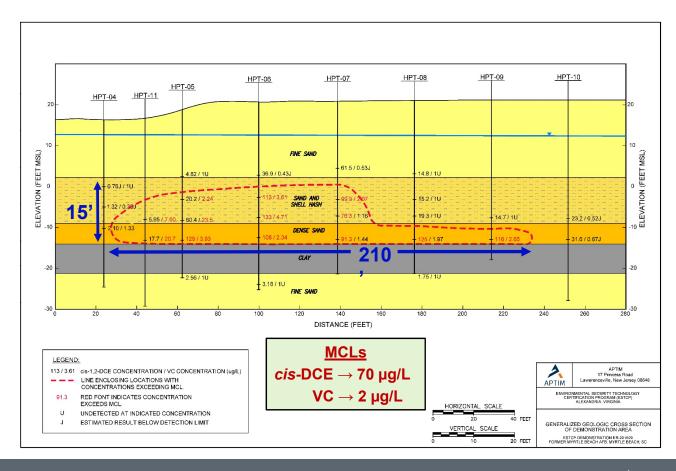
DIRECT-PUSH INVESTIGATION


8 HPT-GW borings
Formation permeability/conductivity
Discrete groundwater sampling
2-5 discrete samples per boring
28 total samples
2 continuous soil cores

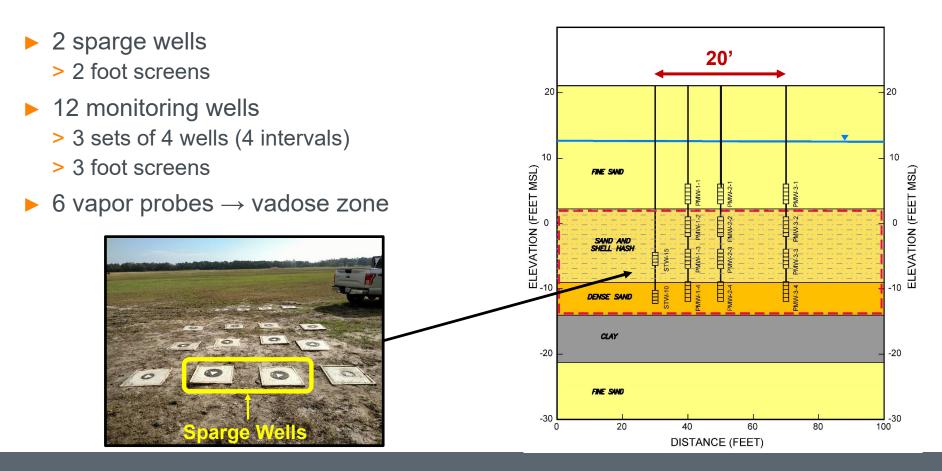
Geoprobe HPT-Groundwater Sampler

CORRELATION OF SOIL CORES TO HPT LOGS

- ► Water table ~8' bgs
- Estimate K's of 90-100 ft/day in upper 3 units
- 8' thick clay underlying shallow aquifer
- EC and HPT logs correlate well



Confidential. Not to be copied, distributed, or reproduced without prior approval. © 2019 APTIM - All rights reserved.


HPT-06

CONCEPTUAL SITE MODEL

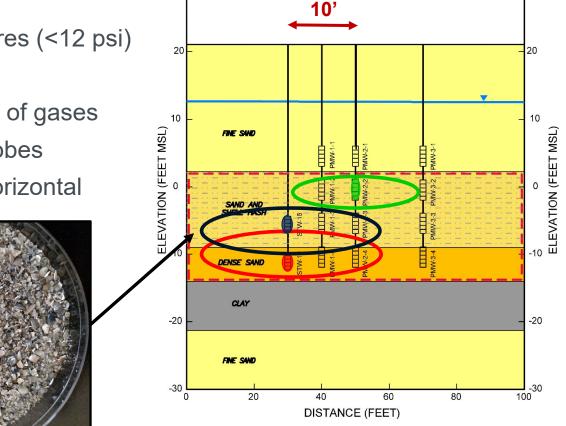
- ► 5 hydrostratigraphic units
- cis-DCE and VC above MCLs
 - > cis-DCE up to 133 µg/L
 - > VC up to 23.5 µg/L
- Plume ~210' wide by 15' thick
 Located within units 2 and 3
- Clay acts as a confining unit

SPARGE TESTING WELL NETWORK

Confidential. Not to be copied, distributed, or reproduced without prior approval. © 2019 APTIM - All rights reserved.

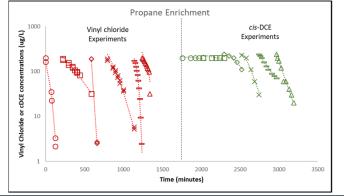
10

SPARGE TESTING


- Oxygen and helium
- ▶ 8 sparge tests at 4 wells
- 10 minutes to > 1 hour
- Monitored DO and GW mounding
- Monitored vapor probes
 - > Helium, oxygen, and other gases

SPARGE TESTING RESULTS

- Low breakout & operating pressures (<12 psi)</p>
- Shell Hash layer very anisotropic
- Preferential horizontal distribution of gases
- No observed impacts at vapor probes
- Not conducive to sparging with horizontal wells


LABORATORY TREATABILITY TESTING

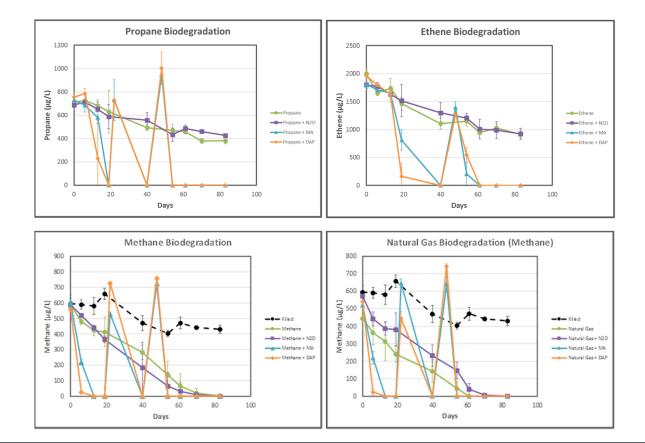
- 1) Can indigenous organisms be stimulated to degrade target cVOCs?
- 2) Are low levels (MCLs) achievable?
- 3) Nutrients required/beneficial?
- 4) Kinetics of biodegradation (alkane/alkene gases, cVOCs)?
- 5) What is the optimal level of co-substrate?
 - Competitive inhibition

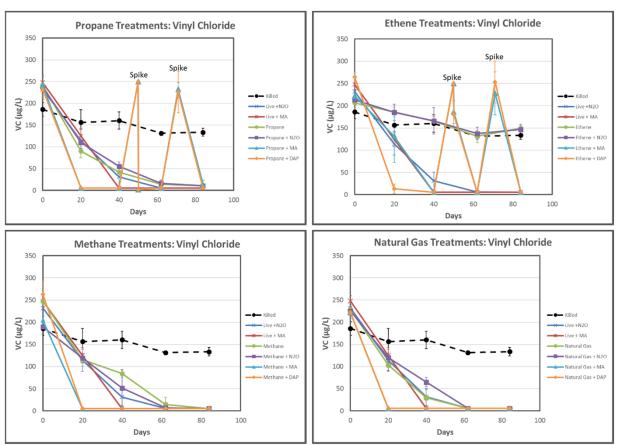
Microcosms

Kinetic Testing

MICROCOSM TESTING

				Alkane/Alkene Gas		
Treatment Number	Treatment Description	Headspace	Gas Purity (%)	Headspace (%)	Aqueous Concentration (ug/L)	Inorganic Nutrients Added
Triplicate Microcosms						
1	Killed Control + Methane*	Air	99.0	3.8	850	Yes
2	Live + TEP & N ₂ 0	Air	NA	NA	NA	Yes
3	Live + TEP & Methylamine	Air	NA	NA	NA	Yes
4	Propane	Air	99.0	1.5	1000	No
5	Propane + TEP & N_2O	Air	99.0	1.5	1000	Yes
6	Propane + TEP & Methylamine	Air	99.0	1.5	1000	Yes
7	Methane	Air	99.5	3.8	850	No
8	Methane + TEP & N_2O	Air	99.5	3.8	850	Yes
9	Methane + TEP & Methylamine	Air	99.5	3.8	850	Yes
10	Ethene	Air	99.5	1.1	1500	No
11	Ethene + TEP & N ₂ 0	Air	99.5	1.1	1500	Yes
12	Ethene + TEP & Methylamine	Air	99.5	1.1	1500	Yes
13	Natural Gas	Air	~95	3.8	850	No
14	Natural Gas + TEP & N ₂ 0	Air	~95	3.8	850	Yes
15	Natural Gas + TEP & Methylamine	Air	~95	3.8	850	Yes
Duplicate Microcosms						
16	Propane + DAP	Air	99.0	1.5	1000	Yes
17	Methane + DAP	Air	99.5	3.8	850	Yes
18	Ethene + DAP	Air	99.5	1.1	1500	Yes
19	Natural Gas + DAP	Air	~95	3.8	850	Yes

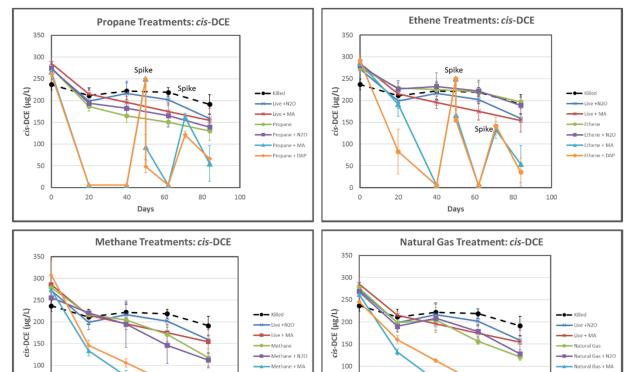

- 4 carbon gas substrates
- With and without nutrients
- 3 nutrient combinations
- Ammonia subsequently tested as nitrogen source


DEGRADATION OF PRIMARY GAS SUBSTRATES

- Methylamine and DAP are effective sources of N
- ► N₂O not effective
- Aquifer appears to be nutrient limited

VINYL CHLORIDE DEGRADATION

- Degradation of VC observed in most treatments
- Degradation in "Live" controls
 - Indigenous aerobes capable of directly metabolizing VC, or
 - Organisms using another cosubstrate present in soil or groundwater (methane, TOC)
- Rates faster in treatments amended with methylamine and DAP



CIS-DCE DEGRADATION

- cis-DCE degradation rates faster in propane and ethene treatments
- Degradation continued for >1 month in absence of amendment addition

Additional Testing Showed:

- Nitrogen more limiting than phosphorous
- Methylamine and ammonia gases both effective sources of N

Methane + DAR

50

0

0

20

40

Days

60

80

100

Confidential. Not to be copied, distributed, or reproduced without prior approval. © 2019 APTIM - All rights reserved.

40

Days

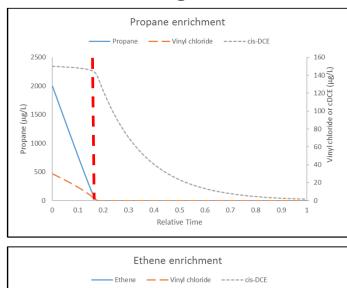
60

80

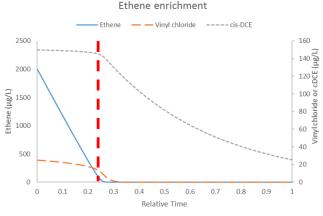
100

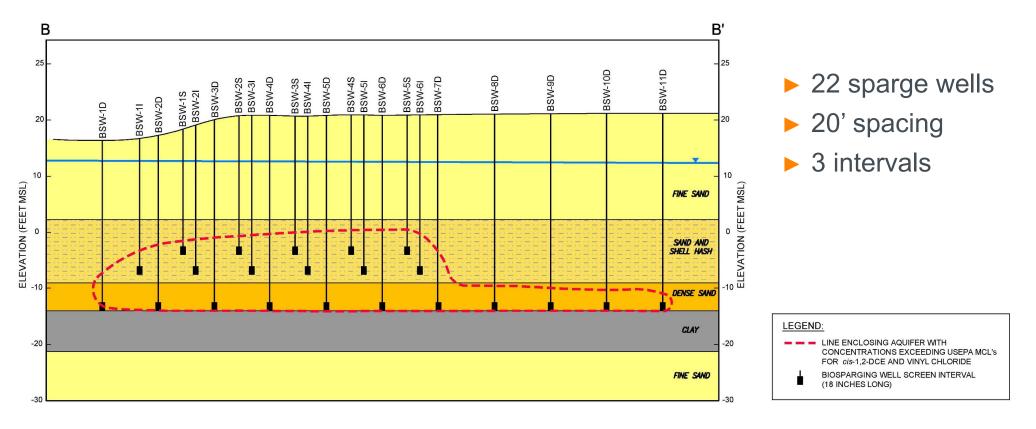
20

50


0

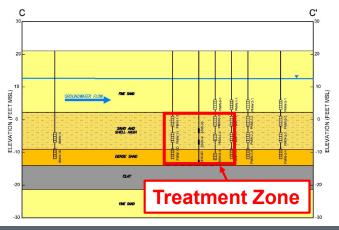
0

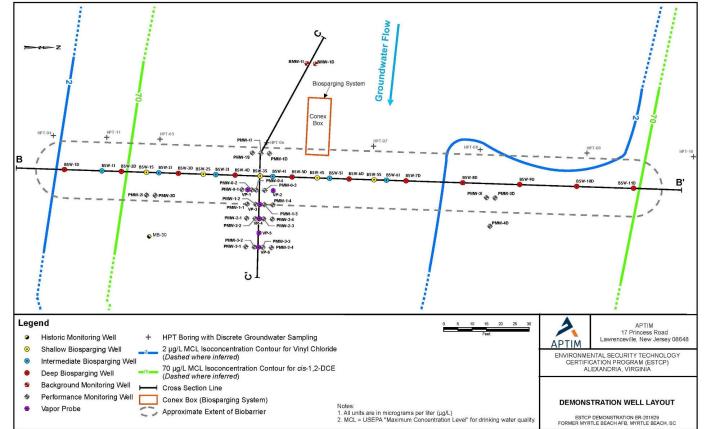

17


KINETIC TESTING

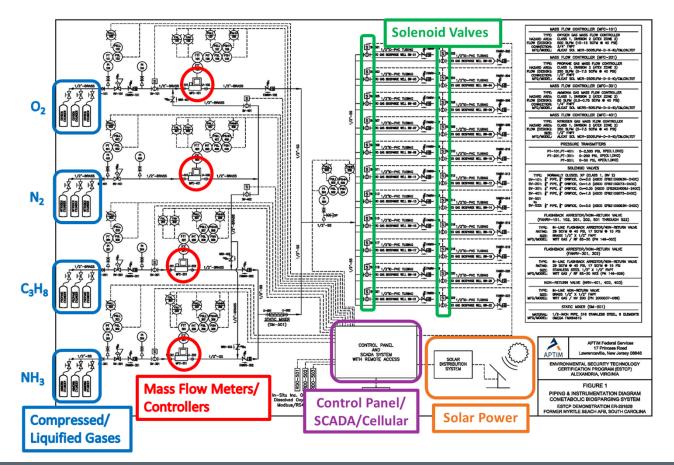
- Propane- and ethene-oxidizing cultures enriched from microcosms
- Propane-oxidizing culture grows much faster (enrichments)
- Degradation rates for *cis*-DCE and VC faster with propane culture
- Substrate inhibition of VC was less with Propane culture
- Propane determined to be the optimal gaseous substrate

Modeling Results


BIOSPARGING WELL LAYOUT


Confidential. Not to be copied, distributed, or reproduced without prior approval. © 2019 APTIM - All rights reserved

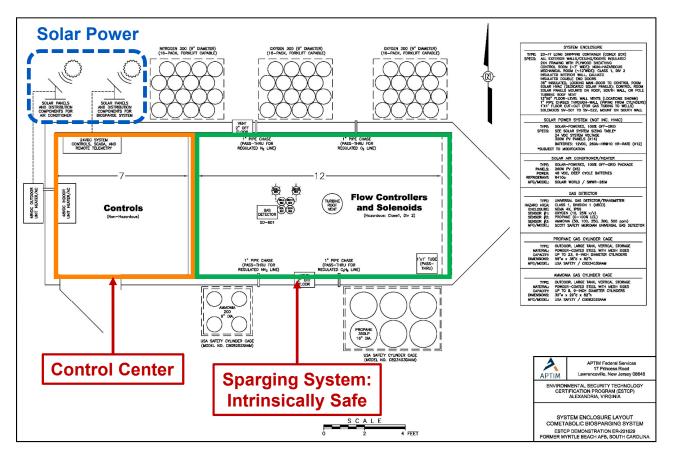
19


DEMONSTRATION LAYOUT

- Biobarrier 220' x 20'
- 26 monitoring wells
 - > 4 with permanent DO sensors
- ► 6 vapor probes

BIOSPARGING SYSTEM: PRIMARY COMPONENTS

- Compressed oxygen and nitrogen
- Liquified propane and anhydrous ammonia
- Solar power (off-grid)
- Control Panel/SCADA
- Cellular for remote monitoring/system changes



21

BIOSPARGING SYSTEM: GENERAL LAYOUT

- 20' Conex box
- Control Center
- Intrinsically safe sparging system
- 16-packs of oxygen and nitrogen
- Propane/ammonia cylinders "ganged" together

Confidential. Not to be copied, distributed, or reproduced without prior approval. © 2019 APTIM - All rights reserved.

22

PLANNED SYSTEM OPERATION

- Oxygen-only phase (~5 weeks)
- Cometabolic treatment phase (14 months)
- Oxygen sparged as needed to maintain aerobic conditions (>3 mg/L)
- Propane/ammonia sparged every 4-8 weeks
 - > "Batch" system
 - > Minimize competitive inhibition
 - > Nitrogen used as a carrier gas
- Nitrogen purge cycles between oxygen and flammable gases

KEY POINTS

- Detailed site characterization & testing key to effective remedial design
- Indigenous bacteria capable of cometabolic degradation of target cVOCs are fairly ubiquitous
- Nutrient addition should be considered when evaluating & designing cometabolic bioremediation
- Sparging approach needs to be tailored to site hydrogeologic conditions

Source: https://pixabav.com

ACKNOWLEDGEMENTS

Research funding from ESTCP

Graig Lavorgna, Rachael Rezes, and Paul Koster van Groos, APTIM

James Begley, MT Environmental Restoration

QUESTIONS

David Lippincott david.lippincott@aptim.com 609 895 5380

Graig Lavorgna graig.lavorgna@aptim.com 609 895 5343

James Begley jbegley@mtenvironmental.com 508 732 0212