Recent Innovative Biological Wastewater Treatment Technologies for Textile Dyeing Wastewater

Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies 15 – 18 April 2019, Baltimore, Maryland

Dr. S. Kanmani Professor & Director Centre for Environmental Studies Anna University, Chennai – 600 025 Tamil Nadu, India

Major sources of pollution

STAGE - 3 GREY CLOTH

Bleaching/Dyeing/ Printing (Wet Processing) FINISHED PRODUCTS

Major Textile Industries in India

Maior Textile cities Coimbatore Å INDIA Chennai . **TEXTILE INDUSTRIES** Madurai AFGHANISTAN Srinagar **Mysore** Anantnac Bangalore Amritsa Ongole CHINA PAKISTAN TIBET Ludhiana Gokak Guntur anioat 🕈 Eluru BHUTAN Solapur Gorakhpu Mumbai Kanpur 🏤 Shahjanwan Nellimarla Allahabad 🕈 amastiputBANGLADES Mirzapur Chillivelsa Varanise Ahmadabad Indore MYANMAR Vadodara Cutters . Mumbai Bay Nagpur of Mumbai Nelimada Jamnagar Bengal Chillivelsa Solapure Rajkot Arabian Vishakhapatnam Elun. Sea Panipat Gokak Guntur Ludhiana Ongole Kanpur Ahmedabad Bengaluru LEGEND Chennai Allahabad Mysore State Boundary Srinagar International Boundary Coimbatore Cotton Industries ilk Industries Anantnag IINDIAI Wool Industries Kolkata lute industries Haora SRI Varanasi Map not to Scale LANKA Mushidabad Copyright © 2014 www.mapsofindia.com (Updated on 2nd June 2014) INDIAN OCEAN Amritsar

Major textile districts in Tamil Nadu

Source : Maps of India

Source: pollution abatement & clean technologies, CPCB, MoEF, 2013

World health Organization

Causes and Concern

Wide Variety of dyes (Reactive, Disperse, etc.) used with fixation 40 - 95%

Resist Biological Degradation, Groundwater Contamination

Colour, Organics (BOD/COD), TDS

Our Research

Wastewater Treatment Technologies

Existing Methods and Its Demerits

Intensive treatment is necessary to degrade the dyestuff and reduces the COD from the effluent

Methods	Removal	Demerits	
Coagulation, flocculation		Large amount of sludge generated (10 – 15 tons/day).	
Adsorption		Disposal of spent carbon	
Chlorine/hypochlorite oxidation	Colour	Formation of toxic chlorinated organic substances.	
Fenton's reagent		Sludge formation	
Biological degradation	BOD, COD	Longer period of acclimitization, slow to degrade, High foot print & Consumes high energy.	

Advanced Oxidation Process

Definition by Glaze et al. (1987)

Near ambient temperature and pressure water treatment processes which involve the generation of highly reactive **hydroxyl radical** (HO°)

Hydroxyl radical:

- Powerful, non-selective chemical oxidant
- Reacts with most organic compounds

Timeline

Wavelength range of photo-chemical degradation

Treatment Scheme for Zero Liquid Discharge System

TNPCB insists to provide ZLD system

SBR vs SBBR

Operating sequence of SBR

SBR - Modified Extended aeration system Suspended growth process Huge sludge production Less Sludge Retention Time (SRT)

Sequential Batch Biofilm Reactor (SBBR)

Attached growth process
More biomass formation
Less sludge production
Longer SRT

Source: Nazaroff & Alvarez-Cohen, 2014

SVI - Determines the settling characteristics of sludge.

 \circ Sludge Volume Index (SVI) = 90 to 110 mL/g

 SVI >110 mL/g (Sludge bulking occurs due to growth of filamentous bacteria, leads to poor settling).

 SVI < 90 mL/g (Old, dense & over-oxidised sludge. Induce rapid settling)

Source: Asha Gurruraj & Manoj Kumar, 2015

Existing Technologies – Merits and Demerits

S. No.	Reactor type	Design Criteria	Advantages	Disadvantages
1.	Activated sludge reactor	 MLSS =1500 mg/L to 3000 mg/L HRT= 4 to 6 hours, F/M ratio = 0.3 to 0.4 d⁻¹ Recirculation ratio = 0.25 to 0.5 	Requires unskilled laborSimple and easy to operate	 Large footprint Minimal nutrients removal Excess bio-sludge production
2.	Sequencing batch reactor	 MLSS =3500 mg/L to 5000 mg/L Cycle Time= 2.5 to 6 hours, F/M ratio = 0.05 to 0.3 d⁻¹ 	Accommodates large fluctuationsHigh SRT	 Excess bio-sludge production Requires skilled labor to operate
3.	Trickling filter	 HLR= 10 to 40 (m³/m²/d) OLR = 0.3 to 1(kg BOD/m³/d) Recirculation ratio = 0.5 to 0.3 	Requires unskilled laborWithstands shock loading	Blockage of filterOdour and fly nuisanceRequires high capital cost
4.	Rotating biological contactor	 HLR= 0.03 to 0.08 (m³/m²/d) OLR = 5 to 16 (g BOD/m²/d) HRT = 1.5 to 4 hours 	 Maintains aerobic and anoxic condition on the disc Short contact time due to large active surface area 	Shaft bearings and mechanical units require frequent maintenance
5.	Fluidized bed biofilm reactor (or) Moving bed biofilm reactor		Lesser aeration tank volumeHigher SRT	 Control of bio-carriers is difficult Less nutrient removal
6.	Membrane bio-reactor		Small footprintProduce RO feed water quality	 Requires high capital and operating cost Membrane fouling

Typical process design parameters

S.No.	Parameters	Design Criteria			
		SBR (Intermittent flow and Intermittent Decant)	Conventional ASP		
1.	F/M Ratio (days ⁻¹)	0.05 - 0.3	0.3 - 0.4		
2.	Sludge age (days)	4 - 20	5 - 8		
3.	Sludge yield (kg of dry solids/Kg of BOD)	0.75 – 1.0	1.0		
4.	MLSS (mg/L)	3500 - 5000	1500 - 3000		
5.	Cycle time/Aeration time (h)	2.5 - 6	4 - 6		
6.	Settling time (h)	> 0.5	1.5 to 2.5		

Source: CPHEEO Manual, November 2013

Scope of the study

Treated wastewater

Literature review – SBBR system

Type of wastewater Experimental conditions		Media specifications	Findings	Reference	
Diary wastewater	Fill – 2 h React - 19 h Settle - 2 h Draw & Idle – 1 h	 Plastic bio-ball (2.5cm dia) Filling - 40%, Surface area – 12000 m²/m³ Density of each ball – 0.96 g/cm³ 	COD removal = 99% TKN rremoval = 78%	Ahmed Nazem et al., 2014	
Domestic wastewater	Fill – 1 h Anaerobic – 17 h Aerobic – 6 h Settle - 1 h Decant – 1 h	Polyurethane foam 1cm X 1cm X 1cm	COD removal = 99%	Asha Gururaj & B Manoj Kumar, 2015	
Dairy wastewater	Fill – 2 h React – 20 h Settle - 1.5 h Draw - 0.5	 Rayon fibre 75mm long,0.07mm dia, Specific surface area – 2200 m²/m³. 	COD removal = 90 - 97%	Abdulgader et al., 2009	

Literature review – SBBR system

Type of wastewater	Experimental conditions	Media specifications	Findings	Reference
Sewage wastewater	Fill – 30 min React – 4 h Settle – 1 h Draw – 30 min	 K1 Kaldnes Polyethylene shaped like small cylinder with dia 9.1mm & length 7.2mm Specific gravity 0.96g/cm³, surface area 500m²/m³. 	COD removal • 40% media = 89% • 50% media = 91% • 60% media = 94%	Ahmet Aygun et al., 2014
Swine wastewater Fill – 5 min Activated Carbon Fiber Activated Carbon Fiber		Activated carbon fiber Ht-40cm & 12000 carbon filler threads	COD removal = 98% TN = 97% TP = 96%	Reti Hai, Yiqun He Xiaohui Wang, Yuan Li et al., 2015

Experimental Setup

Material – Polyester fiber Yarn diameter – 0.2 cm Fiber density – 1.4 g/cm³ Specific surface area - 600 m²/m³ Cost – Rs. 150/kg

Characteristics of Raw Textile Dyeing Effluent

Parameters		IWW 1	IWW 2	IWW 3
Color	436 nm	0.866	0.978	0.701
	525 nm	0.955	0.715	0.587
	620 nm	0.504	0.623	0.678
рН		9.2	9.4	8.7
TDS (mg/L)		6240	6720	6440
TSS (mg/L)		210	290	280
COD (mg/L)		925	980	800
BOD ₅ (mg/L)		220	285	254
BOD 5/COD		0.23	0.29	0.31

Characteristics of AOP Treated Wastewater

Parameters			IWW 2		Average removal efficiency (%)			
				100.00.2	IVVVV1	IWW2	IWW3	
Color	436 nm	0.130	0.108	0.030	85	87	90	
	525 nm	0.115	0.086	0.068	88	90	91	
	620 nm	0.101	0.050	0.070	86	91	91	
COD(mg/L)		470	540	460	49	45	43	
BOD(mg/L)		210	240	180	18	16	17	
BOD/COD)	0.40	0.44	0.45	-	-	-	

Experimental Conditions

Ozone dosage – 150 mg/L; H₂O₂ dosage - 150 mg/L; Contact time - 120 minutes

- Decolourisation was due to the rapid destruction of the conjugated double bonds in the chromophore groups of dyes and forms smaller molecules (intermediates), resulting in colour removal (Nese and Filiz, 2014).
- Most efficient for colour reduction was the combination of O₃+ H₂O₂ + UV with Ozone dosage of 500 mg/h and 100 mg/L of H₂O₂ the reduction of colour was 86% at 280 minutes (Aleksandra *et al.*, 2012).

MLSS Vs Time

- Biofilm formation and biomass adhesion depends on the hydrodynamic conditions in the reactor and geometry of the biocarrier.
- Bio-carrier having higher internal surface area protects the biomass from erosion and abrasion detachment (Matos et al., 2008).

Textile Dyeing Wastewater Treatment

EXPERIMENTAL CONDITIONS: Volume = 5 L; COD = 800 - 980 mg/L; BOD₃= 220 - 285 mg/L[;] O₃ dose = 150 mg/L; H₂O₂ dose = 150 mg/L; Contact time: AOP = 2 h; SBBR = 6 h

- Rough surface of fibre thread beneficial to strong adsorption and growth of micro-organisms.
- Reactor volume decreased as the thread serve as filter media to minimize the concentration of suspended solids (Jin et al., 2012).

Performance of lab-scale reactor studies

Parameters		IWW 1			IWW 2			IWW 3		
		Raw WW	After AOP	After SBBR	Raw WW	After AOP	After SBBR	Raw WW	After AOP	After SBBR
Colour	436 nm	0.866	0.164	0.130	0.978	0.127	0.068	0.701	0.070	0.049
	525 nm	0.955	0.118	0.096	0.715	0.072	0.064	0.587	0.053	0.052
	620 nm	0.504	0.081	0.065	0.623	0.063	0.056	0.678	0.061	0.047
COD (mg/L)		925	470	157	980	540	137	800	460	105
BOD (mg/L)		220	210	40	285	240	36	254	180	35
TSS (mg/l	_)	210	180	22	290	270	30	280	250	20

SBBR (with and without pretreatment)

Parameters		Raw IWW	SBBR	% Removal	AOP + SBBR	% Removal
	436 nm	0.701	0.561	22	0.049	93
Colour	525 nm	0.587	0.376	37	0.052	91
	620 nm	0.678	0.427	38	0.047	93
COD (mg/L)		800	384	52	105	87
BOD (mg/L)		254	105	58	35	86
SS (mg/L)		280	98	65	20	92
Specific sludge production (kgTSS/kgCOD _{removed})		-	0.24	-	0.03	-

Characterization of biomass – SEM Images

- Presence of bio-carriers suppress the excessive growth of filamentous microorganisms due to physical cut or breakdown of filaments by particle to particle collision (Maria Matos et al., 2010).
- Slimy layer responsible for the oxygen and organic diffusion to the microbial cell (Reti Hai at al., 2014).
- Bacillus shaped microorganisms dominates in the biomass.

Conclusion

- AOPs can degrade almost all recalcitrant pollutants and emerging contaminants according to their suitability.
- IETPs/CETPs for enhancing the treatment efficiency.
- Combination of AOPs with biological treatment systems can be adopted for complete degradation of organic compounds.
- SBBR with textile fabric material Fixed attached growth system Avoids difficulty in handling the bio-carrier in the system.
- Significant cost reduction can be done by adopting AOP as pretreatment for improving the biodegradability of recalcitrant wastewater.

Dr. S. Kanmani

Professor & Director College of Engineering Guindy Centre for Environmental Studies Anna University, Chennai – 600 025 Tamil Nadu, India skanmani@annauniv.edu