In-field rapid precipitation of carbonate minerals for assessing hydrocarbon biodegradation rates through ¹⁴CO₂ apportionment

Lindsay Reynolds, Jacobs/Canada Dr. Ian Clark, University of Ottawa Dr. K. Ulrich Mayer, University of British Columbia

April 18, 2019 Battelle Bioremediation Symposium, Baltimore, Maryland

www.jacobs.com | worldwide

Field Study – Old Crow, Yukon

- Contaminant source arctic diesel
- Contamination caused by historic fuel tank leaks, fuel line leaks and 50+ years of fuel handling resulting in accidental spills accumulating over time
- PHC impacts in soil and supra-permafrost water to ~ 2 mbgs
- Study conducted during site assessments before any active remedial techniques applied

Soil Efflux CO₂ Measurements for Hydrocarbon Degradation

- Soil CO₂ flux commonly used to estimate biodegradation component of NSZD
- Differences in flux (J_{CSR}) from impacted areas (J_{TSR}) to background areas (J_{NSR}) used to apportion CO_2 derived from contaminant degradation

$$\mathbf{J}_{\mathbf{CSR}} = \mathbf{J}_{\mathbf{TSR}} - \mathbf{J}_{\mathbf{NSR}}$$
(units of µmol/m²sec⁻¹)

 BUT,... This method does not accurately separate soil gas from contaminant degradation and natural soil respiration processes (Sihota & Mayer, 2013)

Radiocarbon Principles

Carbon Isotope	# Protons	# Neutrons	Atmospheric Abundance (%)
¹² C	6	6	98.9
¹³ C	6	7	1.1
¹⁴ C	6	8	10 ⁻¹²

- ¹⁴C produced in atmosphere
- Equilibrated into carbon cycle through chemical and biological processes
- At metabolic death radiocarbon decay clock begins
- ¹⁴C half life ~5730 years, maximum dating potential ~50,000 yr BP
- Hydrocarbon considered free of all ¹⁴C

F¹⁴C Corrections to soil efflux measurements

 $\begin{aligned} F_{\text{NSR}} &= \text{Fraction derived from natural soil respiration} \\ F_{\text{CSR}} &= \text{Fraction derived from contaminant respiration} \\ J_{\text{CSR}} &= \text{Flux derived from contaminant soil respiration} \\ J_{\text{TSR}} &= \text{Total flux from soil respiration} \\ & (\text{flux measurement on plume}) \end{aligned}$

Traditional Soil CO₂ Sample Collection

- Samples collected as mixed soil gas in evacuated bottles (2x 250ml per sample)
- Mixed soil gas transported to lab for purification and graphitization for analysis by AMS
- Sample bottles prone to contamination through leaky seal or incomplete evacuation
- Large, fragile cumbersome sampling equipment

Novel BaCO₃ Sampling Technique

- Samples now collected as BaCO₃ precipitated in the field in 4.5ml exetainer
- Sample solution strips CO₂ from soil gases allowing other soil gas components to pass through
- Dramatically reduced sample equipment footprint
- Potential solution contamination can be observed before sampling begins

Simplified Laboratory Sample Pretreatment

- Excess solution removed and samples freeze-dried before being pressed into AMS 'target' with matrix material
- Sample is analyzed on Accelerator Mass Spectrometer (AMS)

• 2018 field campaign produced final radiocarbon data within one week

2017 Sample Duplicates

Sample ID	Site condition	F ¹⁴ C	+/-
RC41	Impacted	0.91	0.02
RC41 (DUP)	Impacted	0.89	0.02
RC13	Background	0.99	0.02
RC13 (DUP)	Background	0.99	0.02

2017 – 2018 Sample Duplicates

Sample ID	Site condition	Sampling Year	F ¹⁴ C	+/-
RC57	Impacted	2017	0.84	0.02
RC18-57 (DUP)	Impacted	2018	0.84	0.02
RC46	Plume fringe	2017	0.89	0.02
RC18-46 (DUP)	Plume fringe	2018	0.90	0.02

BaCO₃ vs Graphitized Sample Data – Old vs. New

Sam Graphite	ole ID BaCO ₃	Site Conditions	Graphite F ¹⁴ C	+/-	BaCO ₃ F ¹⁴ C	+/-
GRC18-3	RC12	Background	1.0203	0.00460	1.0390	0.02400
NSRC15-1	RC13	Background	0.9918	0.0027	0.9974	0.00780
	RC19				0.9883	0.02366
GRC18-6	RC18-6	Impacted	0.4840	0.00220	0.4874	0.00595
GRC18-7			0.4878	0.00220		
GRC18-4	RC49	Plume fringe	0.8656	0.00390	0.8353	0.00829
NSRC54-2	RC10	Impacted	0.9552	0.00360	0.9305	0.01124

Field Blank Production

- BaCO₃ blanks can be made in the field using a source of ¹⁴C free CO₂
- Blanks are precipitated in the same manner as representative samples
- Mixed gas field blank was produced from a bottle which was evacuated and transported to the site with all other mixed gas bottles before addition of standard gas in laboratory

Sample Type	Analysis	Blank Value (F ¹⁴ C)	
BaCo ₃	Direct AMS	0.02	
Mixed Soil Gas	Graphitization	0.02	
Lab Standard	Graphitization	0.004	

Radiocarbon paired efflux measurements

- Corrected to average background ¹⁴C measurement of 0.95 F¹⁴C (F¹⁴C_{background})
- Interpretations can now be made where reduced flux was recorded

Refined Calculations of Hydrocarbon Mass Loss

Concluding Remarks

- Radiocarbon as a tracer refines quantification of subsurface hydrocarbon mass loss (NSZD)
- New BaCO₃ precipitation method eases costs and logistics associated with applying radiocarbon to site studies
- BaCO₃ allows for reduced error and site specific background corrections
- Rapid turn around time of BaCO₃ samples allows for quick analysis

Acknowledgements

Vivian Lin, Amy Jimmo, Alan Campbell, Melissa Magnuson, Liz Van Warmerdam, Tom Palaia

