wood.

Innovative and Sustainable Fractured Bedrock Remediation via a Surfactant-Enhanced Aquifer Remediation Approach

Bonani S. Langan, P.E.,RSM bonani.langan@woodplc.com

Jay Bennett, P.G., RSM jay.bennett@woodplc.com

woodplc.com

Overview

- Background & Site History
- Site Conditions
- Remediation Alternatives
 - SEAR
 - Bench-Scale Treatability Study
 - In Situ Pilot Study
- Lessons Learned

Background & Site History

Background

- Cutting blade manufacturing facility
- Solvents, oil and metals contamination
- LNAPL & DNAPL identified near main plant
- P&T for hydraulic control to protect receptor

Site History

Owner assumed environmental liability without knowing full onsite extent

A

- Inadequate regulatory program but need concurrence on closure. Multiple regulatory pathways:
 - Previous Regulatory Pathway VADWQ
 - CERCLA or RCRA Pathway
 - Voluntary Remediation Program
- Ineffective remediation
- Control costs

A presentation by Wood.

Site Conditions

Site Conditions - Fractured Bedrock Geology

Complex Site Geology

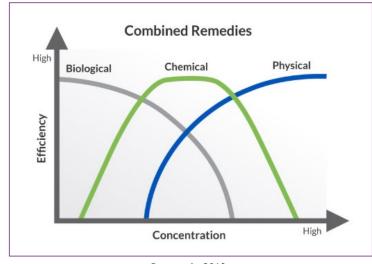
- Saprolite underlain by PWR and bedrock
- Buried debris and construction material
- Cross-bed and fracture communication
- Regional synclinorium

Site Conditions – Multi-Media Impacts

Complex Issues

COCs

- Primary: TCE
- Secondary: Cutting Oil
- Comingled LNAPL/DNAPL plumes
- Groundwater plume in complex fractured bedrock geology
- Cross-bed communication between shallow PWR and deep fractured bedrock
- Multiple media impacted

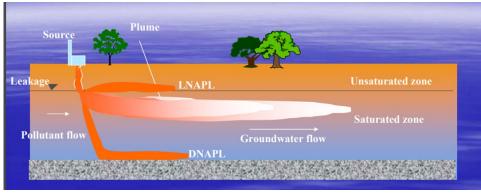


Remediation Alternatives

Remediation Alternatives

Approach

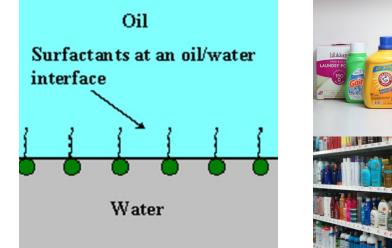
- Aggressive remediation approach
- Combined remedies to address comingled LNAPL/DNAPL plumes and other impacted media
- Several pilot tests implemented:
 - Soil Vapor Extraction
 - Aggressive Fluid Vapor Recovery
 - In Situ Chemical Oxidation
 - Enhanced Bioremediation
 - Surfactant-Enhanced Aquifer Remediation



Regenesis, 2019

Surfactant-Enhanced Aquifer Remediation (SEAR)

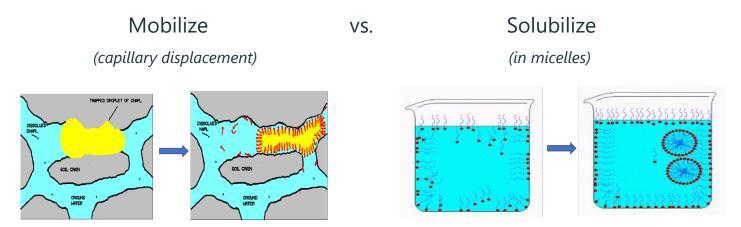
Application of SEAR for DNAPL Removal


- Problem Statement: Large mass + Low solubility + Low MCLs = Increased timeframe for containment remediation.
- **Solution**: Identify optimum surfactant formulation for efficiently mobilizing and removing DNAPL from aquifer.
- Objective: Evaluate effectiveness and feasibility of SEAR to remove DNAPL from shallow and bedrock aquifer zones at Site.

Surfactants

What are surfactants?

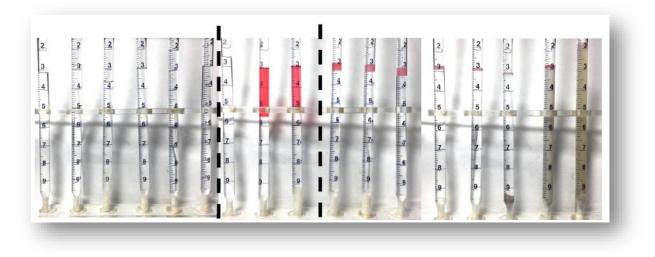
- <u>Surface Active Agent</u>
 - A substance which reduces the surface tension of a liquid in which it is dissolved
 - Found in everyday products



Tersus Environmental, 2019

Surfactants

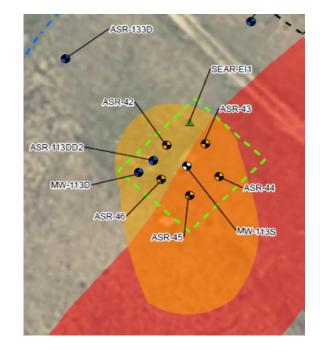
How do surfactants work?



Tersus Environmental, 2019

SEAR – Bench-Scale Treatability Study

Development of Optimal Surfactant Formulation


- Designed to develop a stable surfactant and co-solvent microemulsion
- Achieve neutral buoyancy of TCE for mobilizing DNAPL
- Single solution to simplify field operations and injection activities

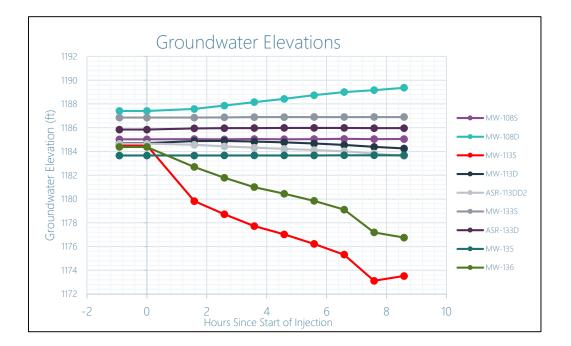
SEAR – In Situ Pilot Study

Effectiveness & Feasibility Evaluation

- Outside-In Approach: Recovery well in center of injection well array
- Multi-Step Process
 - Recovery well pumping test
 - Evaluate hydraulic connectivity of injection wells
 - Conservative Inter-Well Tracer Test
 - Estimate pore volume and residence time
 - Evaluate tracer recovery
 - Partitioning Inter-Well Tracer Test
 - Estimate amount of DNAPL
 - Surfactant & Co-Solvent Micro-Emulsion Injection
 - Post-SEAR Injection Partitioning Inter-Well Tracer Test
 - Estimate the residual volume of DNAPL remaining

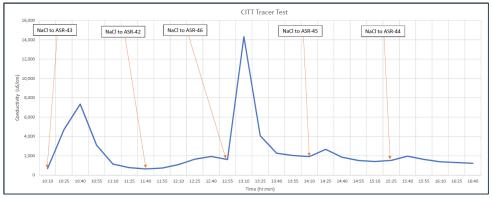
SEAR – In Situ Pilot Study Surfactant Injection

Surfactant & Co-Solvent Injection


- Multi-Step Injection Process:
 - Step 1: Pre-surfactant electrolyte flood
 - Step 2: Surfactant Injection
 - o TASKtm Soy
 - o TASKtm Surfactant
 - Step 3: Post-surfactant electrolyte flood

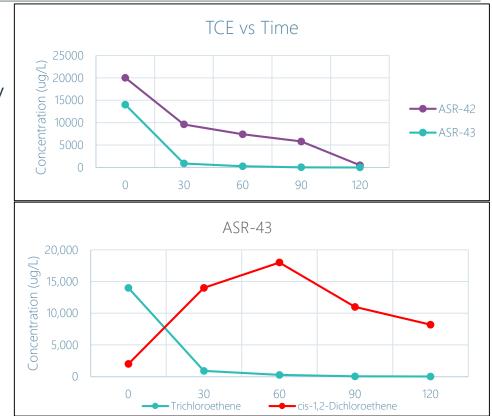
SEAR – In Situ Pilot Study Surfactant Injection

Injection/Extraction Process

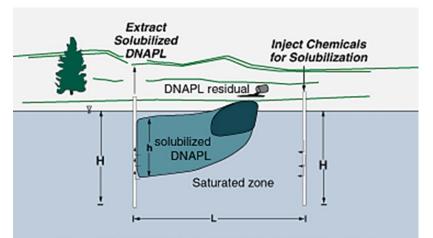

- Injection rate
 - 8 gpm total
 - 5 injection wells
- Extraction rate
 - 10 gpm
 - 1 recovery well
- Influences observed outside target treatment zone

SEAR – In Situ Pilot Study Field Results

Initial Field Results


- Recovery well pumping test
 - Extraction rate effective in creating a groundwater sweep zone
- Conservative Inter-Well Tracer Test
 - Non-partitioning tracer showed immediate and observable influence from 4 out of 5 injection wells
- Partitioning Inter-Well Tracer Test
 - Pore volume ~2,200 gal
 - DNAPL saturation of 3.23%

SEAR – In Situ Pilot Study Analytical Results


Analytical Results

- Post-SEAR Injection PITT
 - More DNAPL extracted than originally estimated to be present
 - 118 gallons of DNAPL removed
- Post-Injection Performance Monitoring
 - TCE concentrations reduced by >90% in well network
 - TCE daughter product concentrations inversely proportional to TCE reductions in well network

Lessons Learned

- Modify design as an "inside-out" configuration
- Implementation would consist of targeted treatment areas across the Site
- Bioremediation may be occurring due to residual surfactant solution
- Analytical trends indicate SEAR is compatible with enhanced bioremediation as a polishing technology for residual COCs

We need to **minimize** and successfully **predict** the vertical migration of solubilized contaminants.

Questions

Thanks to our collaborators at Tersus Environmental David Alden, P.E. Sangho Bang, Ph.D.

Thank You

