Comparison of Catalytic Behaviors between Two 1,4-Dioxane Degrading Monooxygenases

Fei Li, Daiyong Deng, Mengyan Li

Department of Chemistry and Environmental Science

New Jersey Institute of Technology

5th International Symposium on Bioremediation and Sustainable Environmental Technologies

04/17/2019

Baltimore, Maryland

Department of Chemistry and Environmental Science

Monitored natural attenuation is an cost-efficient method for low level dioxane removal

MNA is the combination of natural **biological**, chemical and physical processes that act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of the contaminants

THM-mediated dioxane biodegradation has been widely exploited for MNA

Parales *et al.*, AEM, 1994; Sales *et al.*, AEM, 2013;Li *et al.* ES&T 2013;Li *et al.*, ES&T Letters, 2014.

PRM is a new enzyme that can initiate the dioxane metabolism

Kim et al., Biodegradation., 2009; Li et al., AM&B, 2018; Deng et al., ES&T Letters, 2017.

Dioxane degradation genes can be disseminated among indigenous bacteria in dioxane-impacted aquifer

Background

Objective

To compare the catalytic behaviors between two archetypic 1,4-dioxane degrading enzymes (THM and PRM) and exploit their potentials in monitored natural attention at field-relevant conditions.

- Which enzyme exhibits a higher affinity to dioxane?
- Which enzyme is less vulnerable to co-occurring CVOCs?
- Which enzyme creates more profound isotopic fractionation for a sensitive detection by CSIA?

Flow chart: comparison of PRM with THM

Results

PRM has higher affinity to dioxane than THM

Li et al. in preparation

$\downarrow K_m \longrightarrow Affinity$							
	PRM		THM				
Rate	0-230mg/L	>	0-230mg/L				
K _m	74.73 ± 27.35	<	236.02 ± 42.00				
R^2	0.952		0.994				

Results

Inhibitory effects: 1,1-DCE > TCE > 1,1,1-TCA

PH-06

CB1190

Zhang et al. ES&T 2016

9

Inhibition kinetics

Chlorinated solvents resistance: PRM > THM

Inhibitor	Enzyme	Competitive		Noncompetitive		Uncompetitive	
		K _{IC} (mg/L)	R ²	K _{IN} (mg/L)	R ²	K _{IU} (mg/L)	R ²
1,1-DCE -	PRM	5.27	0.745	6.75	0.937*	-19.20	0.216
	THM	1.41	0.901	2.14	0.987*	-10.00	0.172
TCE -	PRM	5.23	0.919*	18.43	0.857	-13.00	0.800
	THM	1.13	0.921*	-22.48	0.053	-3.06	0.599
1,1,1-TCA -	PRM	5.17	0.888	20.66	0.940*	-15.15	0.747
	THM	8.23	0.951	6.89	0.957*	110.00	0.054
* The model with highest R ² as the best model are selected.							

The model with highest R^2 as the best model are selected.

periment

Compounds-specific isotope analysis (CSIA)

CSIA can distinguish enzymemediated attenuation of target pollutants.

12

¹³C Enrichment efficiency: THM > PRM

ROUND 1 ROUND 2 ROUND 3 ROUND 4

- Microbes harboring PRM may be more prevalent than THM in the field given their enhanced affinity and resistance to cooccurring inhibitors.
- PRM-mediated MNA has been long underestimated due to the lack of biomarkers and limited isotopic fractionation.

14

Ongoing research

Acknowledgements

Mengyan "lan" Li mengyan.li@njit.edu Dr. Mengyan Li Dr. Patrick McLoughlin

Welcome to our platforms/posters

Title	Presenter	Location and Time
Concurrent Biodegradation of 1,4-Dioxane and 1,1- Dichloroethylene by a Gram-Negative Propanotroph <i>Azoarcus</i> sp. DD4.	Mengyan Li NJIT	Holiday Ballroom 5 Wednesday 1:50 pm.
Effective Removal of Contaminants of Emerging	Mengyan Li	Holiday Ballroom 3
Concern by Biologically-Active Filters.	NJIT	Thursday 1:00 pm.
Comparison of Catalytic Behaviors between Two 1,4-	Fei Li	Holiday Ballroom 5
DioxaneDegrading Monooxygenases.	NJIT	Wednesday 10:30 am.
1,4-Dioxane Bioaugmentation during and after	Lingke Zeng	Holiday Ballroom 5
Anaerobic Degradation.	LANGAN	Wednesday 2:50 pm.
1,4-Dioxane Contamination Survey at River Estuaries	Fei Li	Exhibit Hall No.70
and Wastewater Treatment Plants in Northern NJ.	NJIT	Monday/Tuesday
Substrate-Mediated Biotransformation and Biodefluorination of 6:2 FTOH by <i>Mycobacterium</i> and <i>Rhodococcus</i> Species.	Chen Wu NJIT	Exhibit Hall No.8 Monday/Tuesday

Thanks for your attention!

Department of Chemistry and Environmental Science