Stable carbon and hydrogen isotope ratios for assessing fate and transport of 1,4-dioxane

Min-Ying Jacob Chu Peter Bennett

5th International Symposium on Bioremediation & Sustainable Environmental Technologies Baltimore, MD. April 15-18, 2019

Agenda

Background: Biodegradation and CSIA

Lessons learned: CSIA applied during bioremediation pilot test

Masking of isotopic enrichment at field sites

Example site

5 Conclusions

1

2

3

4

ALDRICH

Pseudo-1st order degradation rates for 1,4-dioxane

Degradation process	half-life (d)	experimental conditions	reference:	
acrobic comotabolic	0.45	Bio-stimulation pilot test using groundwater recirculation	Chu et al., 2018	
aerobic cometabolic	19.3 to 33	Bio-augmentation pilot test with propane sparging	Lippincott et al., 2015	
natural attanuation	600	Median of 22 sites (Site-wide values)	Adamson at al. 2015	
natural attenuation	1,500	Median of 131 wells (well-specific values)	Adamson et al., 2015	

Chu, M. Y. J., Bennett, P. J., Dolan, M. E., Hyman, M. R., Peacock, A. D., Bodour, A., ... Goltz, M. N. (2018). Concurrent Treatment of 1,4-Dioxane and Chlorinated Aliphatics in a Groundwater Recirculation System Via Aerobic Cometabolism. *Groundwater Monitoring and Remediation*, 38(3), 53–64.

Lippincott, D., Streger, S. H., Schaefer, C. E., Hinkle, J., Stormo, J., & Steffan, R. J. (2015). Bioaugmentation and propane biosparging for in situ biodegradation of 1,4dioxane. *Groundwater Monitoring and Remediation*, 35(2), 81–92.

Adamson, D. T., Anderson, R. H., Mahendra, S., & Newell, C. J. (2015). Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. *Environmental Science and Technology*, 49(11), 6510–6518. https://doi.org/10.1021/acs.est.5b00964

- Simplified form: $\delta^{13}C_t = \delta^{13}C_o + \epsilon \ln f$
 - $-\delta^{13}C_t$ = isotope ratio in sample at time t
 - this is what we measure in well samples
 - $-\delta^{13}C_{o}$ = isotope ratio at time t=0
 - this is the isotope ratio before biodegradation begins (source term)
 - $-\epsilon$ is the "enrichment factor"
 - Degradation reactions in laboratory
 - -f is the "fraction remaining"
 - (1-*f*)x100 = %degradation
- % degradation can be calculated if $\delta^{13}C_0$, ϵ , and $\delta^{13}C_t$ are known

Enrichment Trends from Reactions with Pure Cultures

Enrichment factors (ε) are distinct for Dual-isotope plots show distinct different reaction conditions: slope for each reaction condition:

strain	substrate	ε _c (‰)	ε _H (‰)	600 —	K1 THF	10	- 00 -]	/		•	
Mycobacterium 1A*	propane	-2.0	-26	400 — ستابی	R ² =0.99	permil) 9					•	
R. rhodochrous**	propane	-2.7±0.3	-21±2) H ₂ 97 200 —	-	4 782H (0 —			21108	Propopo	1
ATCC 21198	isobutane	-2.5±0.3	-28±6		21198 Isobutane m=10.9; R ² =0.91	2	- 0			m=7.4;	R ² =0.94	i I
P. tetrahydrofuran- oxidans K1**	THF	-4.7±0.9	-147±22	0 -4	A 8 12 16	6	- 0 —			6	8	1 10
				-	Δδ ¹³ C (permil)	~		- L	$\Delta \delta^{13}C$	(permil)	0	.0

*Bennett, P. & Aravena, R. (2017). Extending the application of compound-specific isotope analysis to low concentrations of 1,4-dioxane. SERDP ER-2535 Final Report.

 **Bennett, P., Hyman, M., Smith, C., El Mugammar, H., Chu, M.-Y., Nickelsen, M., & Aravena, R. (2018). Enrichment of carbon-13 and deuterium during monooxygenase-mediated biodegradation of 1,4-dioxane. Environmental Science & Technology Letters

Bioremediation Pilot Test, McClellan AFB

Growth of Mycobacterium due to propane injection

CSIA on 1,4-dioxane during biodegradation

Enrichment was smaller than anticipated at MACB-1

Day 90	IACB-1	MACB-1	MACB-2
1,4-D (μg/L)	26	3.6	4.2
residual 1,4-D (f)	1	0.14	0.16
δ^{13} C measured (‰)	-33.7	-33.2	-30.2
δ^{13} C expected (‰)		-29.8	-30.0
Day 270			
1,4-D (μg/L)	24	0.68	0.82
residual 1,4-D (f)	1.00	0.028	0.034
δ^{13} C measured (‰)	-28.9	-25.4	-24.1
δ^{13} C expected (‰)		-21.8	-22.1

Expected δ^{13} C values calculated from Rayleigh equation and

microcosm-based enrichment factor for *Mycobacterium* 1A: -2.0 ‰

Masking of isotopic enrichment

- Can occur from:
 - Variations in isotopic composition of source material
 - Heterogeneity/well blending can mask isotope effects (Section 4.5 of EPA Guidance)→
- Some degradation pathways may have small isotopic enrichment
- The potential for "false negatives" from CSIA is an important consideration for assessing the fate of 1,4-dioxane in groundwater

How heterogeneity can mask enrichment (EPA, 2008)

Hypothetical scenario: degradation in shallow plume

Depletion in heavy isotope with increased degradation can occur:

ALEX

Simulations of heterogeneity

Hypothetical scenarios: 1: no heterogeneity (yellow wells) 2: heterogeneity (blue wells)

Modeling Method (BIOCHLOR-ISO)

- Scenario 1 (degradation only)
 - model degradation using published values for $\rm E_C$ & $\rm E_H$
- Scenario 2: (degradation + heterogeneity)
 - assume no degradation for the "bottom" of the plume
 - Use mixing equations and Scenario 1 output to calculate CSIA results at each well for Scenario 2

Implications for fate and transport assessments

- At sites where 1,4-dioxane degradation is occurring, it may be difficult to observe isotopic enrichment
- Quantitative estimates of degradation based on CSIA are likely to be underestimates in most cases
- Dual isotope trends are expected to be an important line of evidence for degradation of 1,4-dioxane
- Likelihood of successful CSIA applications increase with:
 - High resolution sampling
 - Knowledge of spatial and temporal redox conditions
 - Other supporting lines of evidence (advanced microbial tools, etc.)

Example Site

- Rayleigh degradation curves:
 - THF-grown culture
 - Propane-grown culture

Well	1,4-D (µg/L)
MW101A	970
MW70A	86
MW97A	130
MW96A	14
MW71A	1.4 J

Bennett et. al., 2018. Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane. Environmental Science & Technology Letters 5(3): 148-153

Conclusions

- Dual isotope plot is critical for applying CSIA toward:
 - performance monitoring of remediation systems,
 - MNA assessments
 - fate and transport evaluations
- While CSIA is a powerful line of evidence for degradation, it may be difficult to quantify degradation rates based on CSIA evidence alone
- Absence of isotopic enrichment should not be used to infer absence of degradation.

Acknowledgements

- SERDP Grant ER-2535 (Bennett): CSIA method development
- SERDP Grant ER-2303 (Hyman): Degradation reactions performed at NCSU
- NSERC Discovery Grant (Aravena): CSIA of 1,4-D in samples from degradation reactions
- AFCEC FA8903-13-C0002 (Chu): Field Demonstration at Former McClellan AFB
- Dr. Andrea Leeson at SERDP
- Dr. Hunter Anderson at AFCEC
- Dr. Adria Bodour at AFCEC
- In-kind support from ECT2 (Nickelsen and Schmitz)