DEVELOPMENT OF A QUANTITATIVE FRAMEWORK FOR EVALUATING NATURAL ATTENUATION OF 1,4-DIOXANE, 1,1,1-TCA, 1,1-DCA, AND 1,1-DCE

David Adamson

GSI Environmental Inc., Houston, Texas

PROJECT TEAM

- David Freedman, Angel A. Ramos-Garcia, Clemson University
- John Wilson, Barbara Wilson
 Scissortail Environmental Solutions, LLC
- Anthony Danko, NAVFAC EXWC
- Carmen Lebrón, Independent Consultant

PROBLEM #1: 1,4-Dioxane is widely occurring

KEY POINTS

- 1,4-D detected in 21% of samples collected
- Slightly higher
 occurrence in GW
 sources than SW, but
 GW has higher
 concentrations
- In many cases, sources are either unrecognized or poorly-addressed

Source: Adamson, Pina, Cartwright, Rauch, Anderson, Mohr, and Connor, 2017, Science of the Total Environment, 596-597: 236-245

PROBLEM #2:

Our understanding of 1,4-dioxane attenuation is still evolving

Evidence for attenuation of 1,4-dioxane at many (but not all) field sites (e.g., Adamson et al., 2015; Li et al., 2015; Gedalanga et al., 2016; da Silva et al., 2018)

Presence of CVOCs (particularly 1,1-DCE) can inhibit 1,4-dioxane biodegradation

(e.g., Mahendra and Alvarez-Cohen, 2006; Zhang et al., 2016)

Direct or indirect evidence for 1,4-dioxane attenuation at field sites where CVOC attenuation is occurring

(e.g., Adamson et al., 2015; Chu et al., 2018; Dang et al., 2018)

Identification of pure or mixed cultures that can degrade both 1,4-dioxane and CVOCs

(e.g., Deng et al., 2018; Polasko et al., 2018)

PROBLEM #3:

No framework for selecting MNA for 1,4-Dioxane and Many CVOCs

United States
Environmental Protection
Agency

Office of Research and Development Washington DC 20460 EPA/600/R-98/128 September 1998

\$EPA

Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water

1,4-Dioxane and Chlorinated Ethanes (e.g., 1,1,1-TCA) are <u>not</u> included in original MNA protocol

Recent advances in "lines of evidence" can be used to support evaluation of MNA for these compounds

PROJECT OBJECTIVES

- Develop and test a quantitative decision tool to evaluate MNA for 1,4-D and associated CVOCs
- 2. Validate ¹⁴C-based laboratory assay and other lines of evidence for attenuation

Project No. ER-201730

OVERVIEW OF DECISION FRAMEWORK

GOAL:

Develop tool that will walk RPMs through process for evaluating MNA for 1,4-D and associated CVOCs

Extract Rate Constant from Field Data or ¹⁴C Assay Use Model to Forecast Conc. at Point of Compliance MNA Plausible. NO YES Max Conc. Support with < Standards? Second Lines of Evidence

Determine Source Reduction Necessary to make MNA Plausible

DESKTOP EVALUATION OF RATE CONSTANTS FOR 1,4-DIOXANE

OBJECTIVE:

Establish range for 1,4-D rate constants by estimating values at many sites

Multiply slope of regression line(s) by groundwater seepage velocity =

BULK ATTENUATION
RATE CONSTANT FOR
1,4-D

DESKTOP EVALUATION OF RATE CONSTANTS FOR 1,4-DIOXANE

Results of Preliminary Evaluation (11 sites)

Site ID	# of Monitoring Events	1,4-Dioxane Bulk Attenuation Rate (yr ⁻¹)		Half-life (yr)		Distance between source and goal concentration of 1 µg/L (m)	
		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
6	3	1.8846	0.4592	0.4	0.1	831	103
7	2	1.4529	0.1378	0.5	0.0	85	3
1	3	0.2095	0.0246	3.3	0.4	531	37
10	1	0.6657		10		1356	
9	4	0.0724	0.0146	54	10	178	35
4	5	0.0387	0.0040	171	65	119	45
11	5	0.0419	0.0079	184	53	62	18
3	3	0.0110	0.0035	683	122	146	26
2	13	0.0007	0.0002	1047	265	4074	1264
8	3	0.0002	0.0001	24458	7812	91	29
5	8	0.0003	0.0001	25324	18680	94	69

NEXT STEPS: Add sites, refine estimates using a BIOCHLOR-type tool (to account for non-destructive processes)

KEY POINTS ABOUT RATES

- Significant variability observed *between* sites (4 orders of magnitude)
- Limited variability
 observed within individual
 sites (generally < 30%
 difference between rates
 estimated from different
 monitoring events)

FIELD SAMPLING: Where are we looking?

OBJECTIVE:

Collect samples for ¹⁴C assay and to evaluate several lines of evidence for attenuation

- Mix of DoD and commercial sites
- 6 sites sampled to-date
- 2 to 3 sites yet to be sampled
- Hoping to add more...

FIELD SAMPLING: What are we looking for?

- Single mobilization per site
- 4 to 5 wells per site
 - Biomarkers for 1,4-D and cVOC degradation
 - DHB, DCA, DXMO, ALDH, sMMO, RMO, RDEG, PHE, SCAM
 - DO, Fe(II), pH, Temperature, Conductivity, ORP
 - Stable isotopes (¹³C, ²H) for 1,4-D
 - Completed in coordination with ER-2535 (PI: Bennett)
 - Samples for ¹⁴C-Assay of 1,4-D biodegradation at Clemson

OBJECTIVE:

Collect samples for ¹⁴C assay and to evaluate several lines of evidence for attenuation

¹⁴C ASSAY TO ASSESS BIODEGRADATION OF 1,4-DIOXANE

What if you need direct evidence of aerobic biodegradation based on product formation and an estimate of the rate?

• KEY ISSUE: Aerobic biodegradation of 1,4-dioxane yields CO₂, biomass, and possibly soluble intermediates; how to document the product formation?

(Difficult to quantify using standard analyses)

 CO_2

Biomass

Other soluble intermediates?

¹⁴C ASSAY TO ASSESS BIODEGRADATION OF 1,4-DIOXANE

¹⁴C ASSAY TO ASSESS BIODEGRADATION OF 1,4-DIOXANE

EXAMPLE: Site #3

3 of 5 wells demonstrated measurable 1,4-D degradation activity

Well #4 - IW1

Well #5 - P70

RESULTS TO-DATE: Summary

Positive Evidence for 1,4-D Natural Attenuation?

Site	C vs. Distance	Biomarkers	CSIA	¹⁴ C Assay
1				
2				
3				
4				
5				
6				

1 to 3 additional sites yet to be sampled

RESULTS TO-DATE: Site #3 Example

Data collected in collaboration with SERDP ER-2535 – Thanks to Peter Bennett, Katharine Morrison, and rest of team

RESULTS TO-DATE: Site #3 Example

Why was there no fractionation in some wells?

- Wells have a mix of O₂, and Fe⁺², meaning they almost certainly are producing blended samples of aerobic and anaerobic water.
- Lack of 1,4-D degradation in anaerobic portions masks fractionation occurring as a result of 1,4-D degradation in aerobic portions

Source: Meckenstock et al., 2015, Environ. Sci. Technol., 49, 7073-7081

RESULTS TO-DATE: Summary

						_	
Site	High levels of CVOCs?	Low levels of Biomarkers	Absence of co-substrate?	Low DO?	Low levels of 1,4-D?		Why a lack of 1,4-D biodegradation at
1							several sites?
	•		*	·	_		 Several possible
2			~				factors identified
5							 1,4-D biodegradation is not ubiquitous
	•	_	× .	<u> </u>			is not alonquitous
6							
3						1	_
						¹⁴ C-1,4-	D degraded
4						↓	

END PRODUCTS: Integrated Decision Tool

- Modify BIOCHLOR to get rate constants for 1,4-dioxane
- Develop lines of evidence to validate rate constants:
 - Build a data base comparing qPCR markers to field-scale rate constants and ¹⁴C assay rate constants at benchmark sites

END PRODUCTS: Integrated Decision Tool (continued)

- Separate decision matrices will be developed for degradation pathways for:
 - 1,4-Dioxane, and
 - 1,1,1-TCA and degradation products
- Develop an easy-to-use Excelbased spreadsheet application (BioPIC with TCA/Dioxane).

KEY POINTS

- A robust ¹⁴C laboratory method was developed and validated to determine 1,4-D degradation rates across many sites
- 1,4-D biodegradation activity was confirmed at some—but not all—sites where attenuation was observed
- Interpretation of data shows benefit of additional lines of evidence to confirm actual degradation mechanisms at sites
 - e.g., lack of isotope fractionation may reflect mixed redox conditions
- Data collected so far suggests that odds of observing 1,4-D biodegradation drops at sites with > 3 of 5 key characteristics
- Tool to support evaluation of MNA of 1,4-D and "other" CVOCs will be available soon