

## BIODEGRADATION OF BIS(2-CHLOROETHOXY)METHANE IN SUPPORT OF A FIELD PILOT AT AN HISTORIC CHEMICAL PRODUCTION FACILITY

MATT WHALEY, PHD

Claudia Walecka-Hutchison, Todd Tambling, Nikki Anderson, Rick Wenzel, Robert Stuetzle (Dow)

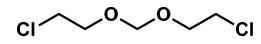
Eleanor Jennings, Jack Bunton (Parsons)

Paul Hatzinger, Simon Vainberg (Aptim)

#### OUTLINE

- Site Background
  - Site Description
  - ➢ COCs
  - Geochemistry
- Previous Bioremediation Bench Studies
- Current Study Answering Questions Ahead of Pilot
  - Biostimulation of Native Degraders
  - > Effect of pH and Salinity on Bioaugmentation
  - Inoculation Cell Density
- Summary and Path Forward




#### SITE INTRODUCTION

- Historic, former manufacturing plant for specialty chemicals and adhesives
- Operations began in 1952, discontinued in 2001
- Currently decommissioned and dismantled, undergoing active remediation in some target areas





## BIS(2-CHLOROETHOXY)METHANE (BCEM)

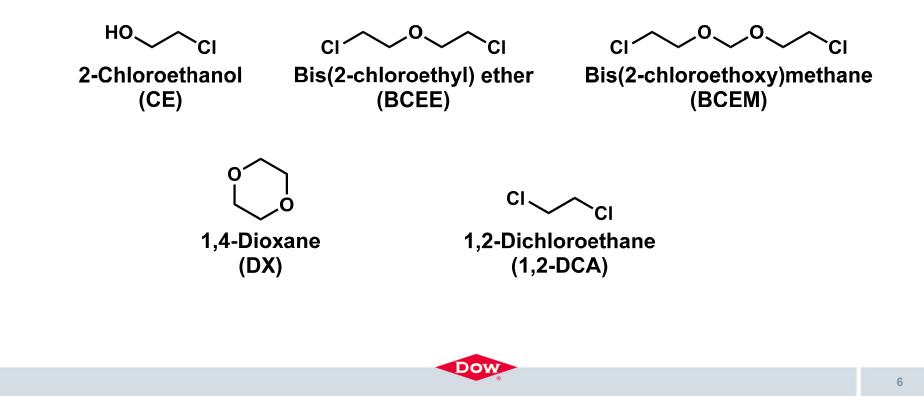


- Used as solvent and chemical intermediate
- >95 % of polysulfide rubber was made from BCEM
- "Site-limited production of 10-50 million lbs..." (USEPA 1977)





## **GEOCHEMICAL CONDITIONS AT THE SITE**


|                              | Range       |
|------------------------------|-------------|
| рН                           | 3.11 – 7.20 |
| Specific Conductance (ìS/cm) | 382 - 37400 |
| Temperature (°C)             | 23.8 - 26.6 |
| Dissolved Oxygen (mg/L)      | 0.38 - 3.0  |
| ORP (mV)                     | -262 - +283 |
| Iron (mg/L)                  | 5 – 200     |

Site groundwater is *predominately acidic and hypoxic with variable TDS*, depending on aquifer and proximity to receptor.



#### SITE COCS

The site is impacted by COCs related to the production of BCEM:



#### **ENVIRONMENTAL BCEM DEGRADATION PROCESSES**

"...not expected to readily biodegrade in the environment..."

"...underwent **0** % *biodegradation* using a settled domestic wastewater inoculum..."

"...estimated hydrolysis half-life of bis(2-chloroethoxy)methane was reported as 0.5 to 2 years (pH independent)..."





#### **2015 PARSONS BIOREMEDIATION STUDY FINDINGS**

- 1,4-Dioxane, BCEE, BCEM:
  - Not reduced by either biostimulation or bioaugmentation
- 2-Chloroethanol:
  - Reduced by both biostimulation and bioaugmentation
- 1,2-DCA:
  - Was reduced by both biostimulation and bioaugmentation
  - Effectiveness possibly reduced by 1,4dioxane and BCEM concentrations



Enhanced Bioremediation of a Consortium of Contaminants at a Historic Chemical-Production Facility

Eleanor M. Jennings, M.S., PhD



## **BIOAUGMENTATION CULTURES**

#### Pseudonocardia sp. strain ENV478:

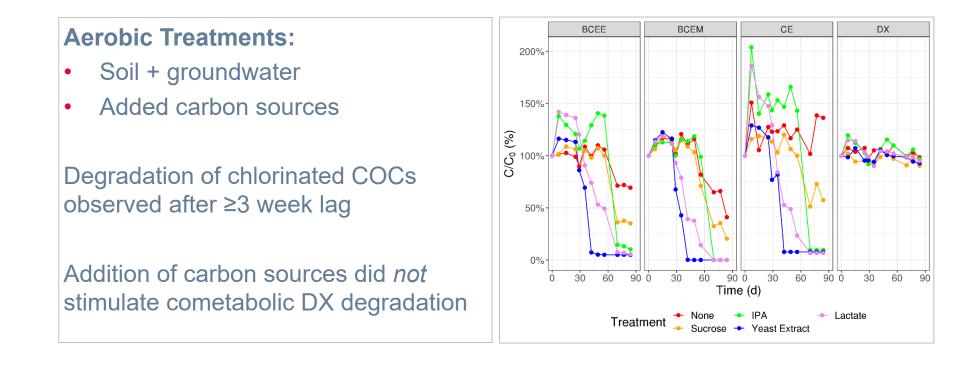
Appl. Environ. Microbiol. 2006, 72, 5218.

- Capable of growth on propane, propanols, THF, sucrose
- Exhibits cometabolic degradation of 1,4-dioxane, BCEE, MTBE

#### *Xanthobacter sp.* strain ENV481:

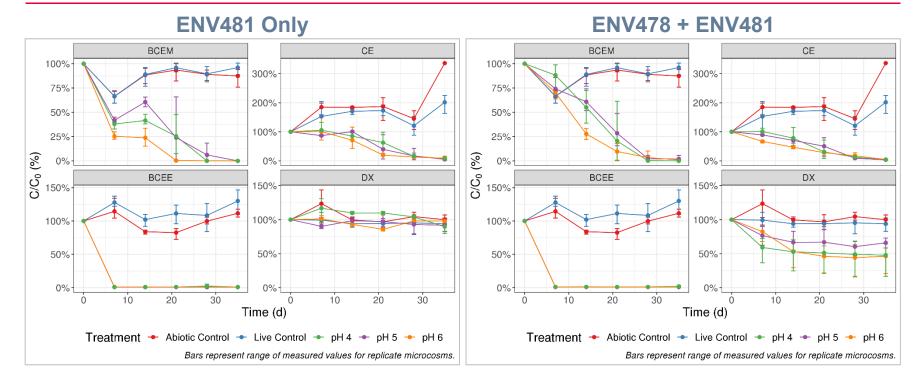
Appl. Environ. Microbiol. 2007, 73, 6870.

- Metabolizes BCEE by a hydrolysis pathway (↓ pH)
- Does not degrade 1,4-dioxane




## **PILOT-FOCUSED BENCH STUDY**

| Treatment       | рН      | Soil                   | Water                | Amendment                              | Culture          | Cell Density<br>(cells/mL)       |
|-----------------|---------|------------------------|----------------------|----------------------------------------|------------------|----------------------------------|
| Abiotic Control | 5.5     | MW-103<br>(25-30' bgs) | MW-103<br>(20' bgs)  | CuCl <sub>2</sub><br>(2.5 g/L)         | NA               | NA                               |
| Live Control    | 5.5     | MW-103<br>(25-30' bgs) | MW-103<br>(20' bgs)  | NA                                     | NA               | NA                               |
| pH Tolerance    | 6, 5, 4 | MW-103<br>(25-30' bgs) | MW-103<br>(20' bgs)  | NaOH/HCI                               | ENV478<br>ENV481 | 10 <sup>7</sup>                  |
| Salinity        | 5.5     | MW-103<br>(25-30' bgs) | MW-103<br>(20' bgs)  | K <sub>2</sub> SO <sub>4</sub><br>NaCl | ENV478<br>ENV481 | 10 <sup>7</sup>                  |
| Biostimulation  | 6       | MW-103<br>(25-30' bgs) | MW-103<br>(20' bgs)  | DAP<br>+ Carbon Source                 | NA               | NA                               |
| Cell Density    | 7       | NA                     | Basal Salt<br>Medium | NA                                     | ENV478<br>ENV481 | 10 <sup>1</sup> -10 <sup>7</sup> |




#### **BIOSTIMULATION: ACTIVITY OF NATIVE DEGRADERS**






#### EFFECT OF PH ON BIOAUGMENTATION IN SOIL AND GROUNDWATER



Biodegradation occurred at low pH but is unlikely to be sustainable in the field




#### BACTERIAL GROWTH IS SLOW IN SITE-RELEVANT PH RANGE



- Site pH varies between pH 3 and 6.5
- Buffering necessary for sustainable bioaugmentation
- Bicarbonate recommended



#### **GROUNDWATER SALINITY DOES NOT IMPACT BIODEGRADATION**

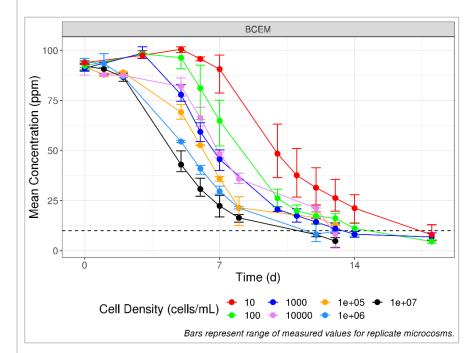


#### **ENV478 + ENV481**

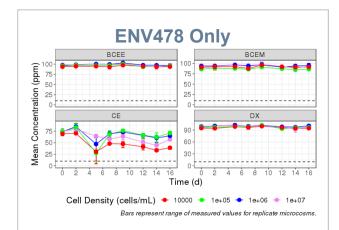


#### **INOCULATION CELL DENSITY STUDY**

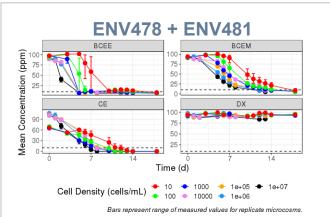
**Objective:** Evaluating effect of cell density on biodegradation rates is necessary to assess application costs


#### **Conditions:**

- 100 mL BSM (growth medium)
- Spiked with 100 ppm COCs
- CD: 10<sup>1</sup>-10<sup>7</sup> cells/mL
- ENV478 + ENV481


#### **Results:**

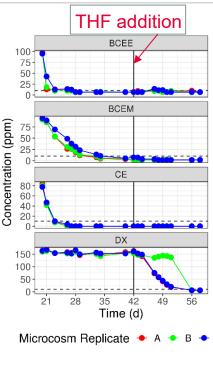
- Rapid degradation of chlorinated COCs within 3 weeks for all CDs
- Lower CDs have longer lag but reach similar degradation rates


Dow



#### BOTH CULTURES NEEDED FOR DEGRADATION OF ALL COCS




- No degradation of any COCs observed with only ENV478
- Activity verified by growth on THF



- Combined cultures are capable degrading all COCs, but...
- DX degradation only occurred after spiking with THF

Dow

 Low inoculation cell densities are sufficient for COC degradation



#### SUMMARY

- Native organisms and strain ENV481 are capable of aerobically degrading BCEM and other chlorinated site COCs
- Successful bioremediation will require groundwater buffering due to low site pH
- Biodegradation was not impacted by high salinity
- Low cell densities can be applied without dramatically impacting speed of COC removal
- Cometabolic DX degradation can be accomplished by treatment with strain ENV478, but more work is needed to identify a suitable carbon source



#### **REMAINING QUESTIONS**

- What are the native organisms that are responsible for degrading the chlorinated COCs?
- What field applicable carbon sources will induce cometabolic DX degradation by ENV478 in site groundwater and soil?
- What is the minimum DO concentration for biodegradation in this system, and what is the oxygen uptake rate?
  - Preliminary data suggest that >2 mg/L is probably necessary
  - > No biodegradation at 1 mg/L
- What concentrations of COCs are toxic to these organisms? How close to the source can we apply?



# Questions?

Matt Whaley Associate Research Scientist Core R&D – Chemical Science <u>cmwhaley@dow.com</u>

