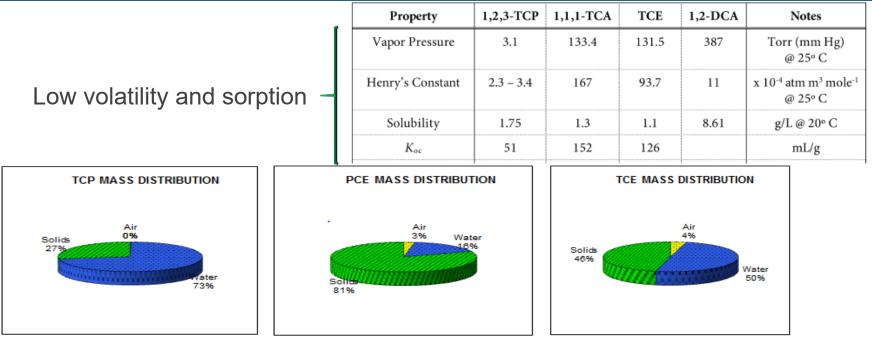
Factors Affecting Enhanced In Situ Biological Reduction of 1,2,3-Trichloropropane in Groundwater: Case Studies from Central California

Srinivasa Varadhan, Ph.D, P.E. Eric Suchomel, Ph.D, P.E. Melissa Asher, P.E. Sandra Dworatzek, M.Sc.

Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies April 15-18, 2019 Baltimore, Maryland Geosyntec consultants

Why is 1,2,3-Trichloropropane an Emerging Concern for Groundwater?

- Man-made compound
 - Formerly used as a chemical solvent and extraction agent
 - Chemical intermediate in the production of:
 - Other chemical intermediates
 - Agricultural fumigants
 - Specialty polymers and sealants
 - Commonly found with 1,2-dichloropropane (1,2-DCP)
- Typically found at:
 - Ag-chem facilities, chemical manufacturing/storage facilities, military bases
 - Supply wells, particular those in agricultural areas (non-point sources)
- Classified as a likely or potential carcinogen to humans
 - EPA, US Health & Human Services, American Conference of Governmental Industrial Hygienists, NIOSH
 - Classified as a carcinogen by the State of California


Geosyntec[>]

Black - carbon

White – hydrogen Green – chlorine

Why is 1,2,3-Trichloropropane an Emerging Concern for Groundwater?

- Little retardation may form long, straight groundwater plumes
- Compared to chlorinated ethenes and chlorinated ethanes, TCP is less likely to sorb to solid material or partition into the vapor phase.

Current Regulatory Climate

Federal	 USEPA tap water RSL is 0.00075 µg/L Listed on 2015 Draft Contaminant Candidate List 4 (CCL4)
California	 0.0007 μg/L Public Health Goal (est. 2009) 0.005 μg/L MCL (adopted 18 July 2017)
Hawaii	• State MCL of 0.6 μg/L (est. 2011)
Minnesota	 Health Risk Limits (HRL) (est. 2011): 0.003 μg/L Cancer HRL
New Jersey	• 0.03 µg/L MCL (est. 2018)
Other States?	Coming Soon?

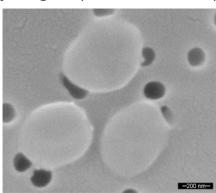
Groundwater Remediation

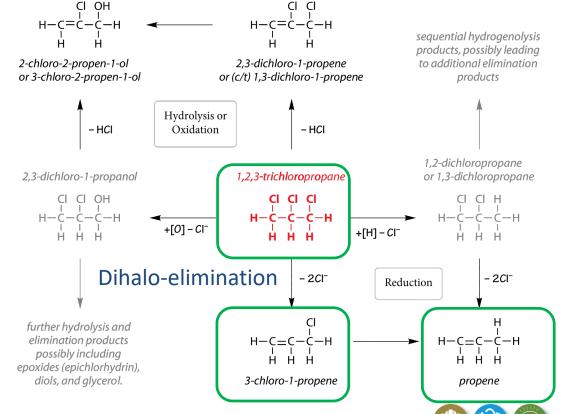
- Groundwater ex situ treatment feasible but potentially costly
 - GAC effective, but long residence time required
 - Advanced oxidation processes may also be effective
- In situ remediation is most effective but not widely tested
 - Potentially costly for dilute plumes
 - Includes:
 - Biological Reduction (ISBR)
 - Chemical Oxidation (ISCO)
 - Chemical Reduction: Zero Valent Metals (ISCR)

Geosyntec[>]

In Situ Biological Reduction (ISBR)-Timeline

- <u>Since 2000</u> Biostimulation at numerous sites; mixed results and unknown/unclear degradation mechanism and pathway
- <u>~2010</u> Dihaloelimination of chlorinated propanes by *Dehalogenimonas* recognized (Bowman et al, 2012)
- <u>2014</u> Commercially-available testing of *Dehalogenimonas* (Dhg) (SiREM's Gene-Trac[®] Dhg) and discovery of Dhg in SiREM's KB-1[®] Plus bioaugmentation culture
- <u>~2015</u> Laboratory scale testing to understand and develop TCP degradation using Dhg
- **2016** First-to-field bioaugmentation pilot scale study
- **2018** Full-scale field implementation of bioaugmentation

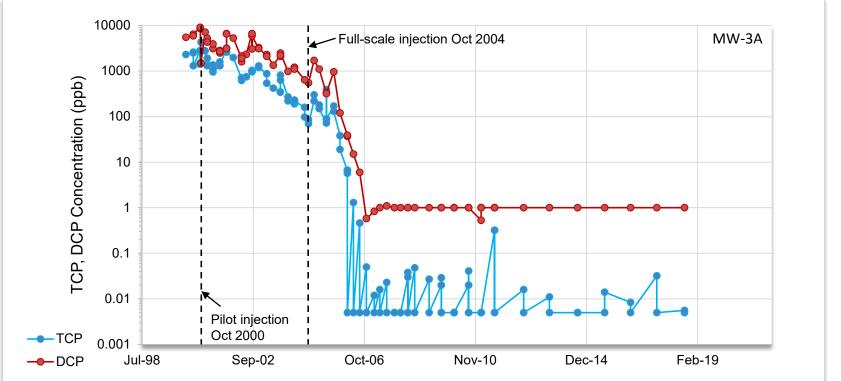



1,2,3-TCP Degradation Pathway

Geosyntec[>] consultants

Strains of *Dehalogenimonas* spp¹

- 1,2,3-TCP, 1,2-DCP, 1,1,2,2-TeCA, 1,1,2-TCA, 1,2-DCA degrading
- Strictly anaerobic
- Hydrogen (electron donor)



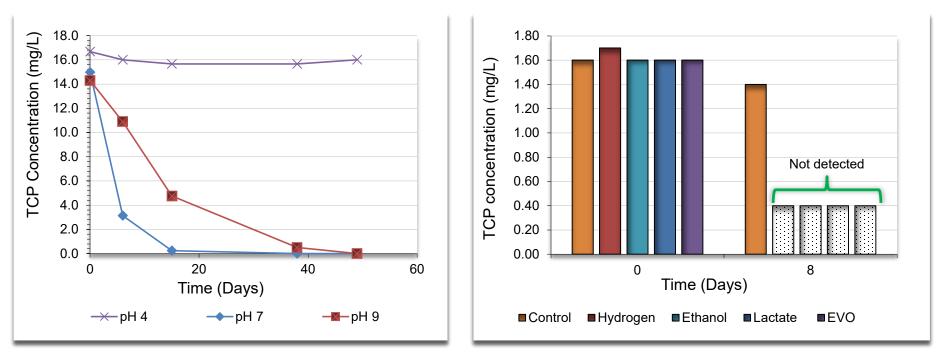
- Direct push injections of a slowrelease electron donor
- Successful long-term reduction of TCP (and 1,2-DCP)
- Pilot led to full-scale implementation
- Understanding of remedial mechanisms remained unclear
- Recent Dhg testing inconclusive
 - ~9 years after full-scale injections

Geosyntec[>]

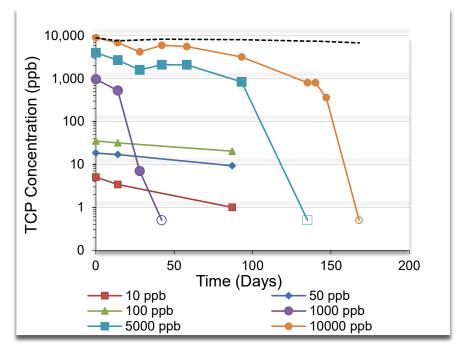
Geosyntec[▷]

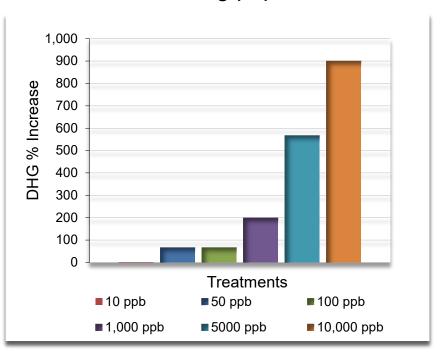
ISBR Development

- Evaluate sensitivity to site specific parameters
 - pH
 - Concentration range
 - Presence of co-contaminants
 - In-situ conditions
- Biostimulation
 - Amendment type
- Bioaugmentation
 - Culture growth conditions
 - Dhg population



Lessons from ISBR Development


Effect of amendment type



Lessons from ISBR Development

Effect of concentration

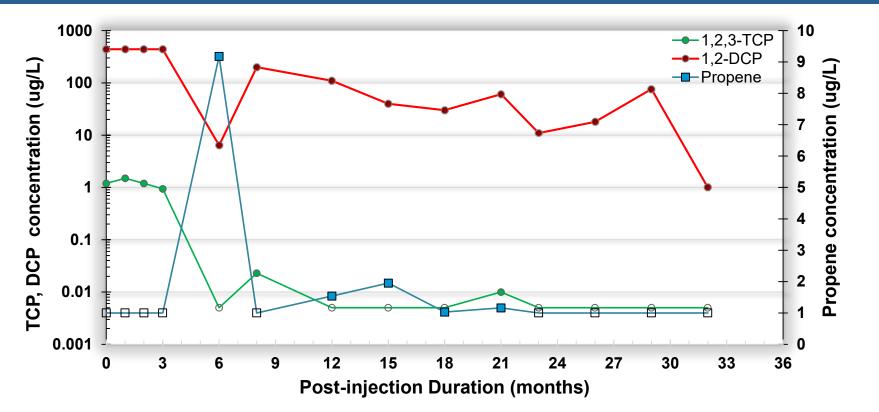
Effect on Dhg population

Geosyntec[▷]

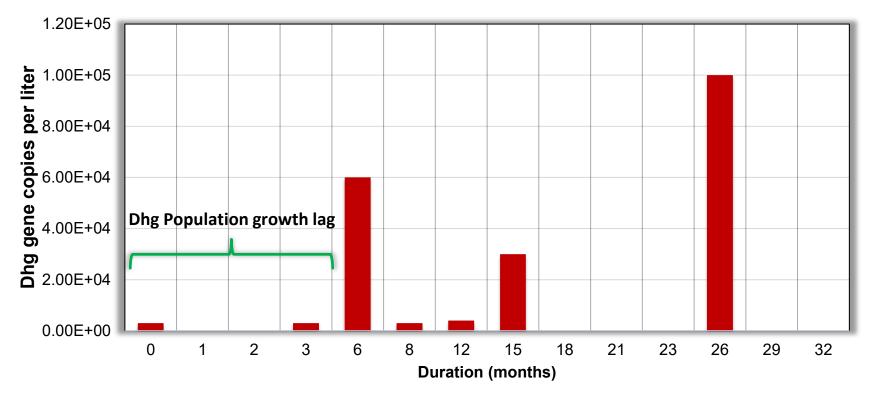
Former agricultural chemical facility

Constituent	Max Site Conc.	State Goal
1,2,3-TCP	72 μg/L	0.005 μg/L (MCL)
1,2-DCP	680 μg/L	5 μg/L (MCL)
Nitrate (as N)	1,800 mg/L	
Sulfate	415 mg/L	

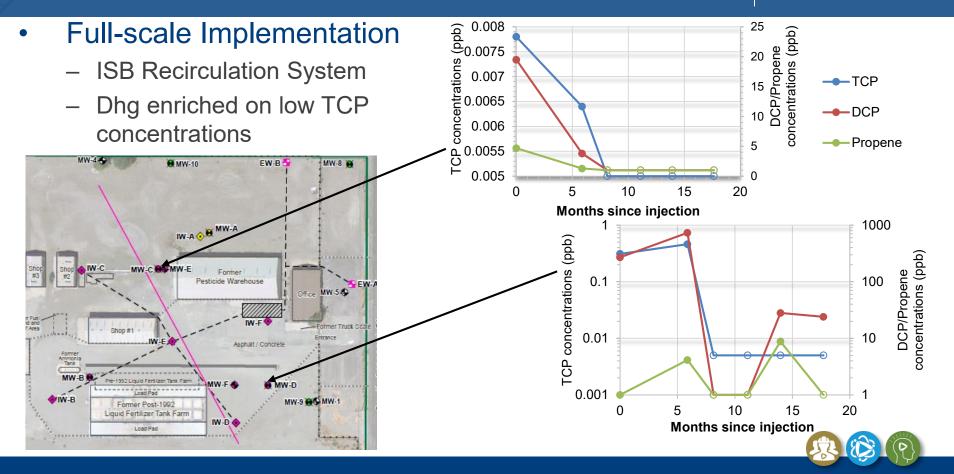
- Treatability study elements
 - Biostimulation with lactate and emulsified vegetable oil (EVO)
 - Bioaugmentation with KB-1[®]Plus
- Promising results with KB-1[®]Plus bioaugmentation


First-to-field bioaugmentation

- Injections mid-May 2016
 - EVO/lactate electron donor
 - Bioaugmentation with KB-1®Plus (Dhg enriched)
 - Dhg not enriched on TCP



Geosyntec[▷]


Geosyntec[▷]

Geosyntec[>]

Conclusions/Summary

- 1,2,3-TCP is an emerging challenge
 - Relatively high toxicity -> Low regulatory levels
 - Limited effective remedial applications
 - Biodegradation pathway not well understood until now
- ISBR parameters appear to be similar to chlorinated ethenes/ethanes
 - Potentially similar costs for implementation, with initial concentration considerations
 - Site specific conditions must be considered for effective implementation

Team & Acknowledgements

Geosyntec Consultants

- Melissa Asher, PE
- Eric Suchomel, PhD, PE
- Rula Deeb, PhD, PE

SiREM

- Sandra Dworatzek
- Jeff Roberts
- Phil Dennis
- Jennifer Webb

Geosyntec[>]