Impact of Hydrogen Peroxide on Horizontal Transfer of Naphthalene-Degrading Genes

Potential Use of Plasmids in Remediation

- Plasmids are small segments of DNA that can be transferred between cells. They encode genes for:
- Antibiotic resistance
- Degradation of xenobiotic compounds. These are known as catabolic plasmids.
- Plasmids are needed for populations of bacteria that degrade:
 - Camphor
 - 2,4-D
 - PCBs and PBBs
 - Nitrotoluene
 - Phenanthrene

Catabolic Plasmids and Conjugation

- Horizontal gene transfer allows plasmids to be replicated independent of cell division
- Conjugation is the most frequent method of horizontal gene transfer

Figure 1: Description of	⁻ Conjugation	
Step 1: Pili on donor cells attach to potential recipient cells and pull the two cells together		
Chromosomal DNA	Plasmid DNA	Chromosomal DNA
Donor Cell	Pili	Recipient Cell
	0	DD
Step 2: A small hole forms in the membranes of the two cells allowing plasmids DNA to be transferred.		
Step 3: The plasmid will be replicated and passed to the recipient. After conjugation both cells contain and express the plasmid.		
Old Donor		O DO New Donor

- Recipient cells that express and maintain the plasmid are called *transconjugates*.
- Environmental conditions greatly impact transfer frequency

Environmental Condition	Transconjugate Frequency
Bulk Soil or Water	10 ⁻⁵ transconjugates per donor cell [8]
Biofilm	0.29 transconjugates per donor cell [3]

- Although plasmids have to potential to be useful in remeditaion they are often only contained in a subset of the bacterial population. This population may not be dominant at a site.
- Plasmid conjugation has to potential to increase the number of bacteria that can degrade a contaminant and are well adapted to site conditions.

Anastasia Fox and Kayleigh Millerick Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX

Current Knowledge:

- Current research has focused on optimizing conditions for transfer by varying [1][2][4][9]:
 - рH Donor to recipient ratios Temperature

Bacterial Strains

Carbon additions (glucose and LB)

Soil type and depth

- Most of these parameters are difficult or costly to alter on a large scale, like at a contaminated site.
- Carbon source addition had inconsistent impacts on transfer frequency The addition of an easier to degrade substrate can increase bacterial populations but reduce expression of degradation genes [2][9].
- Field scale experiments or experiments with plants have many complex interactions so it is difficult to determine what had the greatest impact on transfer frequency.

Figure 2: Mating Experiment Setup

Donor and recipient cells (1:1) Naphthalene (30mg/L) Hydrogen Peroxide (50µM)

> Pure cultures will be grown to late exponential phase, concentrated and resuspended in phosphate butter

 Naphthalene and hydrogen peroxide will be spiked in and serve as selective pressures for conjugation.

Aerobic Respiration

Figure 5: ROS production from aerobic respiration $OrgC + H_2O_2 \rightarrow CO_2 + H^+ + e^-$

Understanding how ROS impacts gene transfer is important because ROS is ubiquitous and can be easily stimulated. Below are 3 potential sources of ROS to encourage gene transfer.

Oxidizing Chemicals

Figure 4: ROS production from oxidizing chemicals

 $S_2O_8^{2-} + 2e^- \rightarrow SO_4^{2-} + \frac{SO_4^{2-}}{100}$ Lower concentrations $SO_4^{\cdot -} + OH^- \rightarrow SO_4^{2-} + OH^{\cdot -}$

of ROS will stress the cells, but will not cause mass cell death.

Current Knowledge and Gaps

Knowledge Gaps:

- Results are difficult to apply to field scale remediation because the experimental conditions are often very different from conditions seen at sites.
 - Experiments on homogeneous surfaces, like filter mating experiments, have donor and recipient cells in close proximity to each other increasing transfer frequency
- Additions of antibiotic resistance genes and the use of antibiotics as a selective pressure increase transfer frequency but cannot be replicated in situ.
- There are only limited studies that investigate the impact of stress on conjugation frequency of catabolic plasmids.
 - Exposing only recipient bacteria to stress does not reflect field conditions where all bacteria would be stressed [4].
- Reactive oxygen species (ROS) is known to increase the transfer of antibiotic resistance plasmids [5][10].

Experimental Setup

Figure 3: Process of Mating Experiment

Mating experiments will be conducted for 24 hours allowing for *E. coli* to receive the naphthalene degrading plasmid

• Transconjugates will be enumerated using DNA extraction, plating and possible flow cytometry.

- Current work

Environmental Sources of ROS

$$O_2 \qquad O_2^{\cdot -} \rightarrow H_2 O_2 \rightarrow O H^{\cdot -}$$

Increased chance of ROS production with higher O_2 concentration or with specific cultures [6].

Group 1

Goals for research:

ROS are a group of chemicals containing partially reduced, redox-active oxygen molecule. ROS can increase the transfer of antibiotic plasmids between 5 and 100 fold [5][10]. **Can ROS increase the transfer of catabolic** plasmids by several folds?

• Methods to get replicable plate counting for NAH7 harboring cells are in the process of being developed.

• Experiments were conducted to determine the impact of H_2O_2 on naphthalene concentration. The concentration of naphthalene was initially reduced due to hydrogen peroxide, but there was still naphthalene in the aqueous phase.

Concentration of Naphthalene in presence of H_2O_2