

Integrated Biogeochemical / Electrochemical Method for Remediation of Contaminated Groundwater

Jim Mueller – Provectus, USA jim.mueller@provectusenv.com

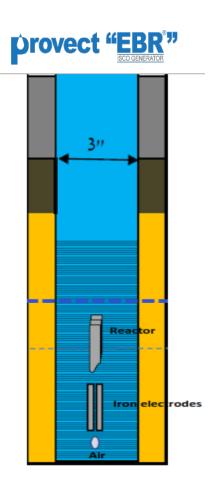
Elie Elgressy, Gil Elgressy - E. Elgressy, Israel gil@Elgressey-International.com

Raphi Mandelbaum - LDD Technologies, Israel raphi@LDDtech.com

Battelle's 5Th International Symposium on Bioremediation & Sustainable Technologies Baltimore, Maryland April 14-18, 2019

Presentation Outline

Problem Statement


- Overview of Available ISCO Technologies
- Why Do We Need Another?

♦ What is Provect-"EBR®"?

- What is Provect-EBR?
- How does it Work / Mode of Action?
- Remote System Control and Real-Time Monitoring
- Applications to Date

Case Studies

- CHCs: Confidential Site (Tel Aviv, Israel)
- MTBE: Operating Gas Station, Sonol Kiryon Site
- MTBE/BTEX: Operating Gas Station, Neve Tdizek Site
- Summary and Conclusions / R&D Needs

ISCO = Breaking Chemical Bonds

- Oxidant must be able to accept electrons
 - Capacity = Equivalent weight (MW / No. electrons)
- Ultimate end point is mineralization
 - Partial oxidation is common

Bond Type	Volts (eV)
Carbon-Carbon (single) Long chain hydrocarbons PAHs, DRO, GRO	2.5
Carbon-Carbon (one and a half) Aromatic Type - BTEX and PCP	2.0
Carbon-Carbon (double) HVOCs, PCE, TCE, DCE, VC	1.5
Carbon-Hydrogen (Alkanes)	1.0

Summary of ISCO Technologies

	_
	W
	N
•	
	O
•	
	X
	\cup
	_
	O
	Ō
	\subseteq
	0
	<u> </u>
	S)

Oxidation Potentials	Volts
Fluorine (F ₂)	2.87
Hydroxyl radical (OH●)	2.80
Persulfate radical (SO ₄ ●)	2.60
Ferrate (Fe ⁺⁶)	2.20
Ozone (O ₃)	2.08
Persulfate (S ₂ O ₈ ⁻²)	2.01
Hydrogen peroxide (H ₂ O ₂)	1.78
Permanganate (MnO ₄ -)	1.68
Chlorine (Cl ₂)	1.49
https://sites.google.com/site/ecpreparation/ferrate-v	i

Fenton's

- Treats wide range of contaminants
- Short subsurface lifetime
- · Difficult to apply in reactive soils

Persulfate

- Treats wide range of contaminants
- Sulfate radical forms slower than the hydroxyl radical, allowing a larger radius of influence

Provect-OX

- Generates Ferrate (Fe IV, V, VI possible)
- Treats wide range of contaminants
- Extended in situ lifetime w/ continual production
- Avoids Rebound

Ozone

- Treats wide range of contaminants
- Short subsurface lifetime
- Limited use in saturated zone

Permanganate –

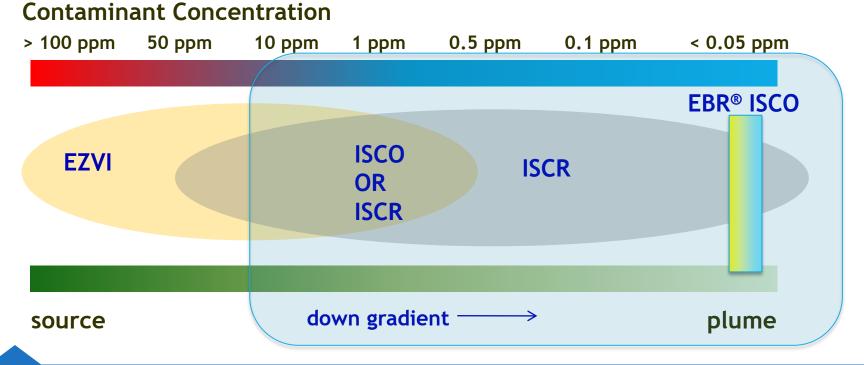
- Treats limited range of contaminants
- Partial oxidation of TPHs, etc
- Long subsurface lifetime
- Potential effects on hydrogeology

Reactive Oxidant Species (ROS) Higher oxidation potential = stronger the oxidizer

Why We Need A New ISCO Technology

- **Longevity**: Conventional ISCO amendments and means of generating ROS are limited by distribution, kinetics, and short environmental half-lives (10E⁻⁹ to 10E⁻⁶ seconds) = need to be continuously generated / applied.
- ISCO PRBs: PRB applications using existing ISCO (candles, KPS, etc) are limited
- Sustained, In Situ Production of ROS could yield effective PRBs especially for COIs not conducive to ISCR/ZVI such as 1,4-dioxane, MTBE/TBA, perchlorate, (PFAS?) plumes.

APPENDIX A. Comparative Analysis of Various Options for an Example PRB @ 50 m long x 5 m deep (4 to 9 m bgs) x 3 m wide.

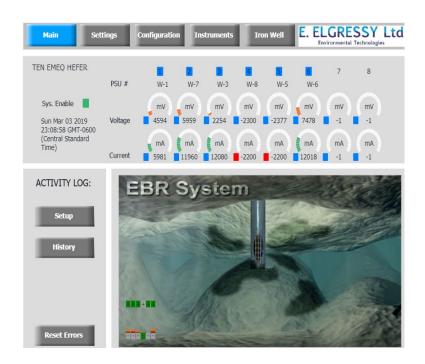

Technology	Process	Process Benefits Detriments		Materials	Example Construction
					O&M&M costs (USD)
Provect-EBR	In situ ISCO	Longevity 5 to >7 years;	Limited application outside	8 EBR wells	8-well EBR system, installed = \$125K
	(Fenton's)	Treats COIs without	Israel;	spaced 5.5 m	8x, 4-inch diam wells = \$24K
	generator	intermediates;	Mostly used to date for MTBE	apart	Engineering/startup = \$30K
		Remote monitoring control	and refined petroleum		Annual OMM = \$30/yr
		panel and software included	products		TOTAL = \$209

Provect-"EBR®" ISCO PRB

In Situ ISCO Generator to continuously produce Fenton's type ROS yields an effective PRB technology for:

- Challenging lithologies (deep aquifers, clayey soils, fractured rock)
- Situations where sorption/sequestration is not considered an effective response
- Alternatives to hydraulic containment (long term O&M&M)

What is Provect-"EBR®"



Electro Bioremediation (EBR) well(s) contain an air sparge plus 3 electrodes:

- ♦ H₂O₂ production
- ♦ Fe²⁺ release

♦ O₂ production Computerized controller Electrolytic cells for O, production Reactor Electrolytic cells for H₂O₂ production Electrolytic cells for Fe2+ production

Computerized control panel for remote system / adjustment and real-time performance monitoring

US Patent No. 9,975,156 B2

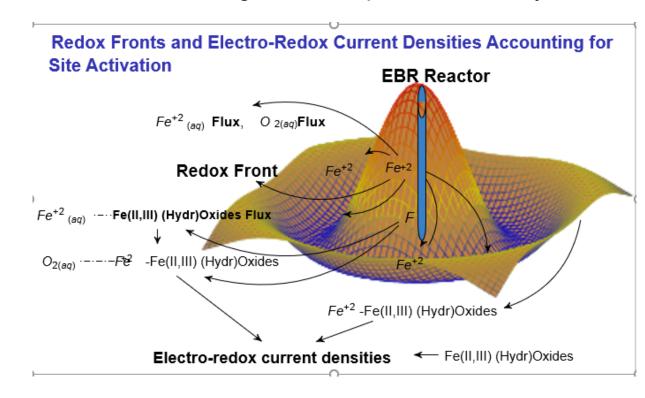
How Does EBR Work?

The EBR Well Generates Reactive Oxidant Species (ROS) in a manner similar to other Electro-Fenton's (EF) type systems (Nazari *et al.*, 2019; Rosales, *et.al*, 2012; Sires *et al.*, 2014; Yuan et al., 2013):

Production of O₂: electrolytic reduction of water on a catalytic electrode yields molecular oxygen, O₂

Production of H_2O_2: two-electron reduction of oxygen on a cathode surface generates H_2O_2

Release of Iron: H_2O_2 interacts with ferrous iron (Fe²⁺) released from a third cell to yield hydroperoxyl (HO_2 ·)/superoxide (O_2 ·) and hydroxyl radicals (OH·), and likely ferrates


$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$$

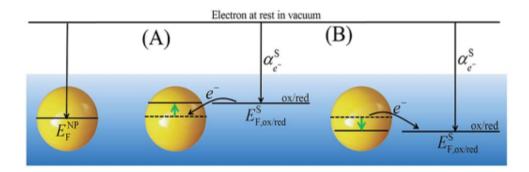
 $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO' + OH^-$
 $Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO'_2 + H^+$
 $Fe^{3+} + HO'_2 \rightarrow Fe^{2+} + O_2 + H^+$

How Does EBR Differ From EF?

Fe^{2+/3+} Nanoclusters: At neutral pH EBR uniquely generates "low" Fermi Level (highly oxidized) FeII/III oxyhydroxide nanoclusters (2 nM) as the sacrificial Fe source corrodes within the well (Ai *et al.*, 2013; Elgressy 2019).

Subsurface distribution of Fe nanoclusters throughout the aquifer is driven by:

- Induced redox fronts
- Electro-redox current densities
- Flectroosmosis
- Electrophoresis
- Dynamic coupling between EBR wells
- Equilibration of differences in Fermi level energies self-generated self-propagated

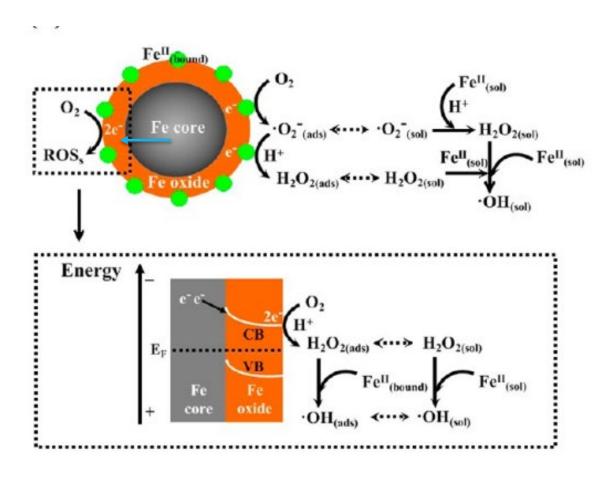

How Does EBR Differ From EF?

Fe^{2+/3+} Nanoclusters: A critical and unique feature of the EBR is use of geophysical mechanisms to enhance subsurface distribution of low Fermi level Fe nanoclusters and propagate catalysis *in situ* to continuously generate reactive oxidants throughout its effective ROI.

Electrochemical Potential of an e- is the difference in potential between the oxidized and reduced species (Peljo et al., 2017; Scanlon et al., 2015)

Fermi Level is a thermodynamic "value" to define the electrochemical potential of an electron in a redox couple in solution

At +850mV ("low" Fermi Level electrochemical potential) electrons are essentially freely transferred from Fe³⁺ to Fe²⁺


Scheme 3 Redox equilibria for metallic NPs in solution showing the capabilities of metallic NPs to be (A) charged and (B) discharged upon Fermi level equilibration with an excess of a single dominant redox couple in solution.

In Situ Generation of ROS

P

As Fe (hydro)oxides within the aquifer ROI equilibrate their Fermi level electrochemical potentials they continuously catalyze *in situ* generation of new ROS from dissolved molecular O_2 via two kinds of molecular oxygen activation pathways (Ai *et al.*, 2013):

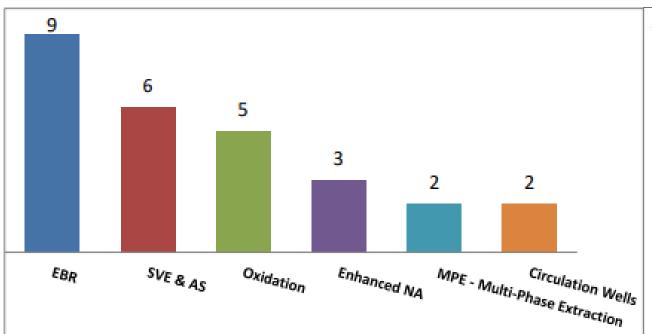
- On the Fe core via rapid two-electron-reduction molecular oxygen activation (may eventually be blocked by the formation of iron oxide coatings), then
- Surface bound ferrous ions catalyze the singleelectron-reduction molecular oxygen activation pathway

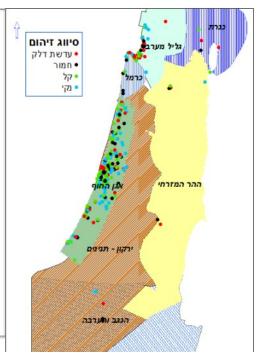
Summary of EBR Reactions

P

- Generation of H₂O₂
- ♦ Release of Fe²⁺
- ► H₂O₂ interacts Fe²⁺ to yield ROS HO₂·/O₂· and OH· (ferrate?)
- ◆ Release of O₂ and low Fermi Level Fe²+/Fe³+ nanoclusters
- Self-propagation throughout ROI (less confined by lithology)
- Continuous in situ production of ROS catalyzed by O₂ activation

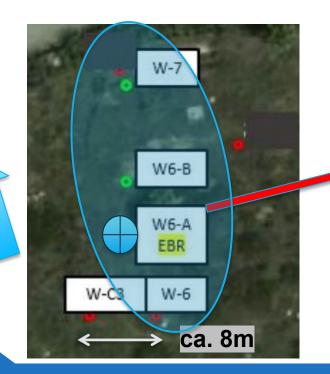
from equilibration of Fermi levels of Fe

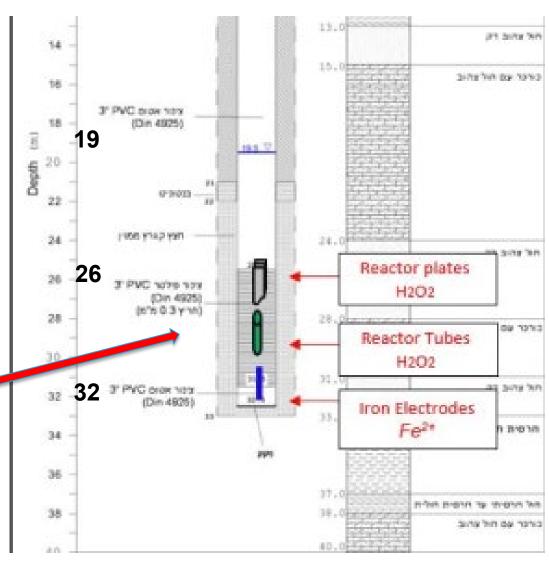

- Transition from ISCO to bioremediation (using oxygen and iron as electron acceptors) and RNA using abiotic transformations.
- Process controlled remotely with real-time monitoring



Where has it been Used?

- ♦ In 2017, Israel had 27 gas stations undergoing active remediation
- ♦ EBR technology was employed at 9 (33%) + 2 chlorinated solvent sites
- ◆ Today, 7 sites are in clean-closure monitoring after 1 year of operation
- ◆ EBR is ISO-certified and approved by the Israeli Water Authority
- ♦ No PRB Applications. No USA applications.



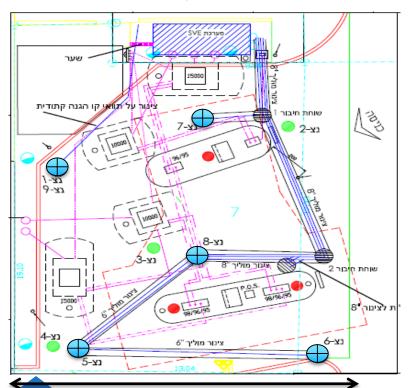


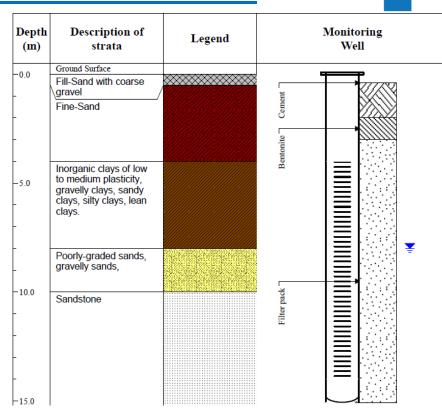
Case Study - Solvent Site

P

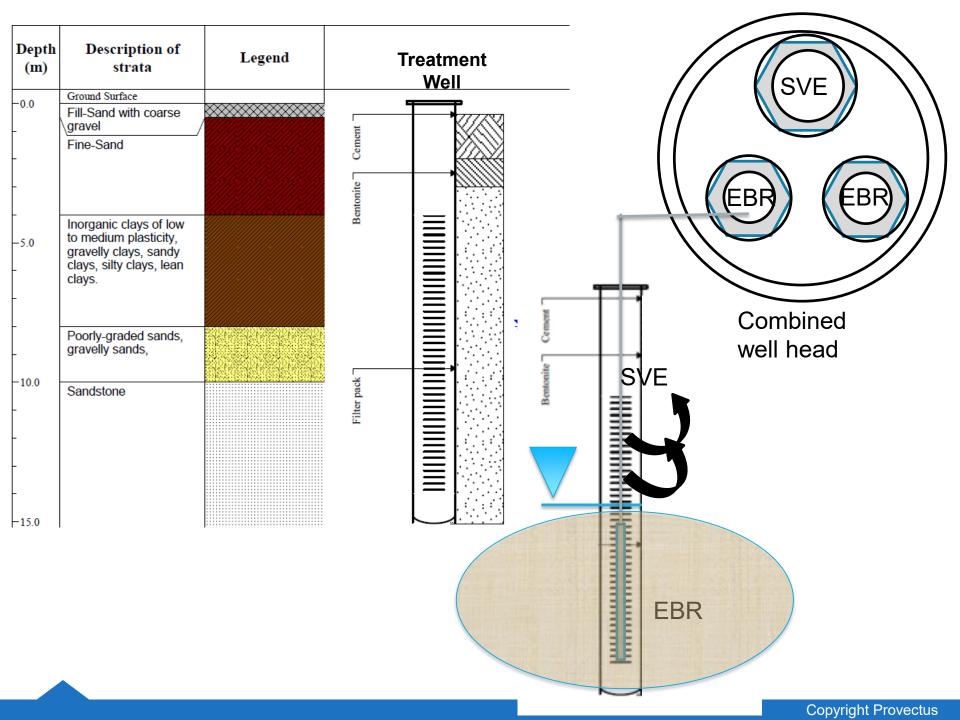
- Sandy aquifer impacts
 - ♦ PCE max. 257 ug/L
 - ◆ TCE max. 25,146 ug/L
 - ♦ DCE max. 47 ug/L

CVOC Removal (60 days; ppb)

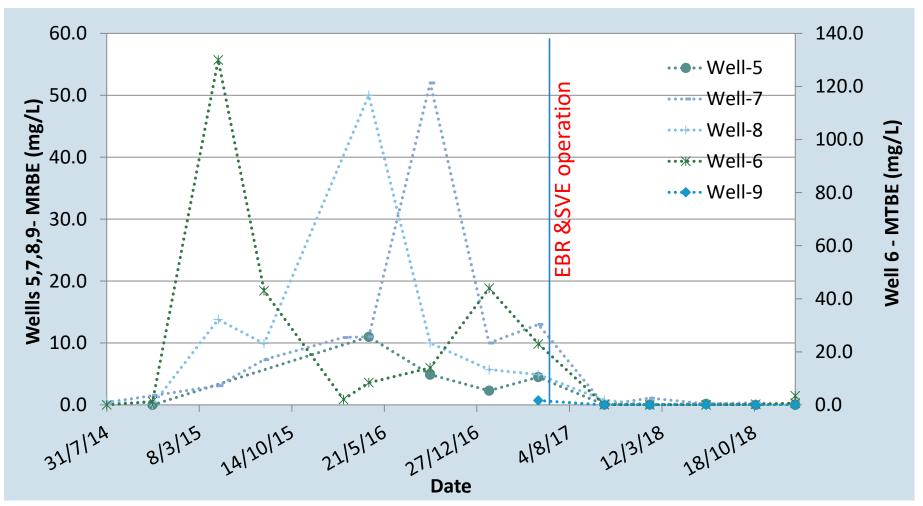

CVOC (ug/L)	Time (Days)	Well 6 (10 m up)	Well 6a EBR Well	Well 6b (5 m down)	Well 7 (20 m down)	
PCE	0	8.7	257	<2	<2	
	30	2.4	<2	<2	<2	
	60	<2	5	<2	<2	
TCE	0	752	25,146	74	24	
	30	201	<2	6	14	
	60	37	15	4	<2	
DCE	0	14	47	<1	<1	
	30	2.6	<1	<1	<1	
	60	1.6	8	<1	<1	


- Single EBR Well + Control Panel and remote monitoring < \$45K installed
- ROI observed 20 m downgradient within 30 to 60 days.
- >99% CVOC removal within 30 days

Case Study - Neve Tzedik Site

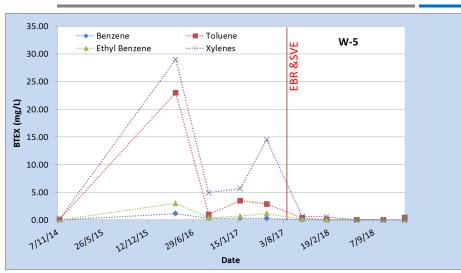

P

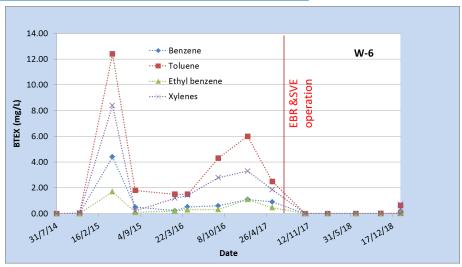
- Operating Gasoline Station
 - Groundwater at 7 to 8 m bgs
 - sandy aquifer with si cl lenses
 - ♦ MTBE >50 mg/L; TPH >100 mg/L
 - ♦ 242 m² impacted area

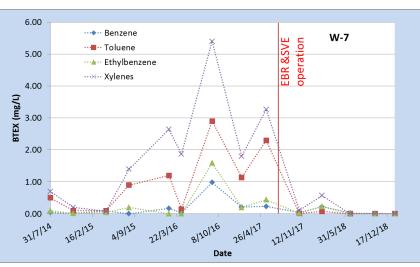


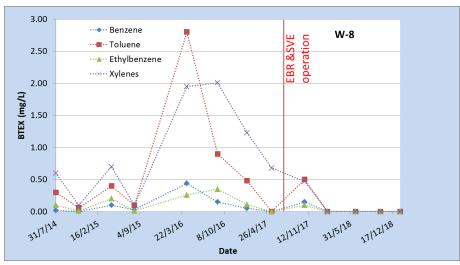
- 5 EBR/SVE Systems (2017)
- Monitoring wells

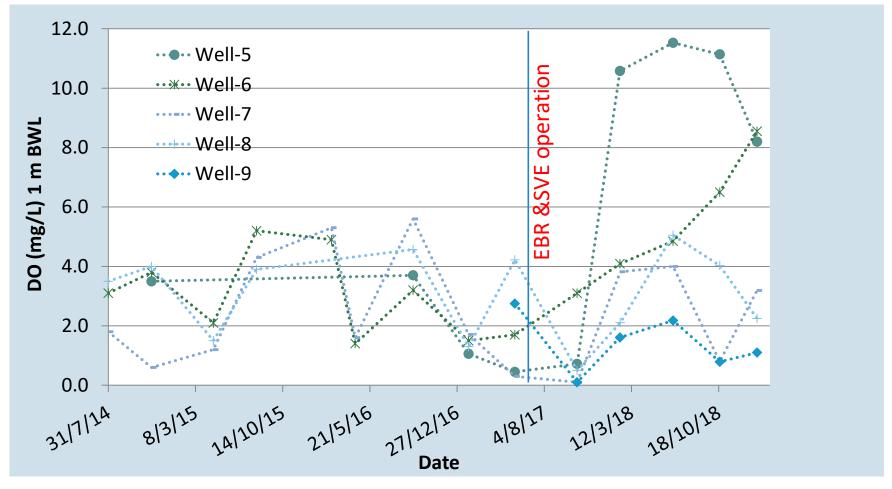
MTBE Concentration (mg/L) in Water



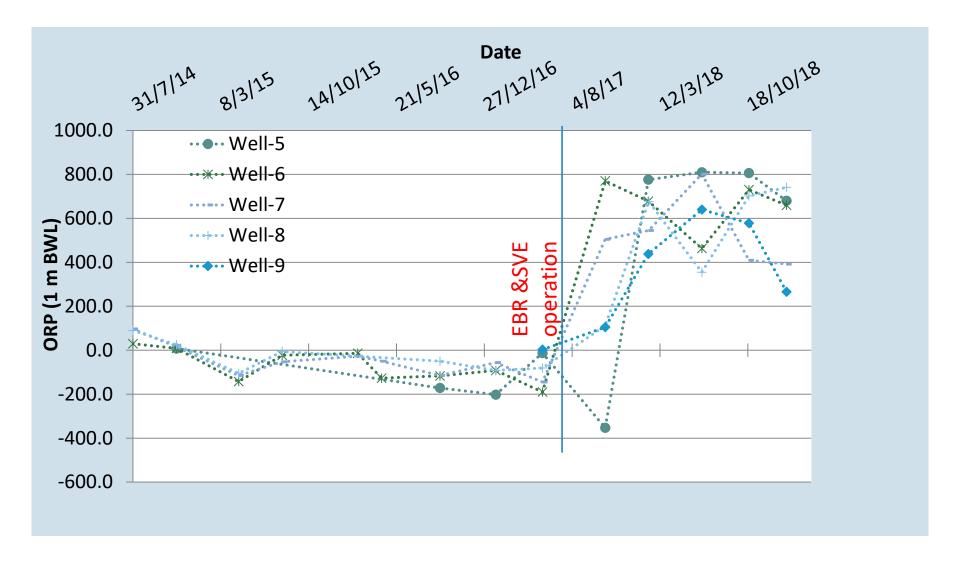


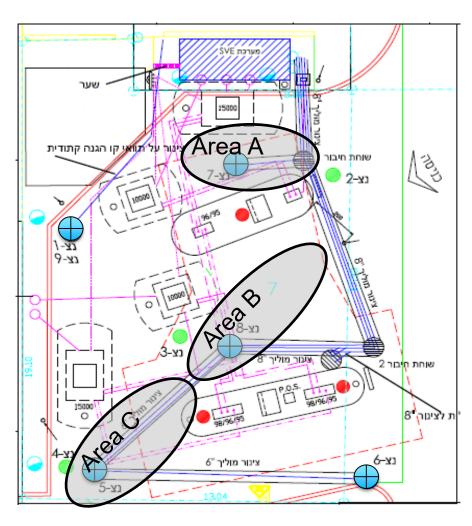

♦ MW-6 ca. 130 ppm to < 5 ppb within 12 months</p>

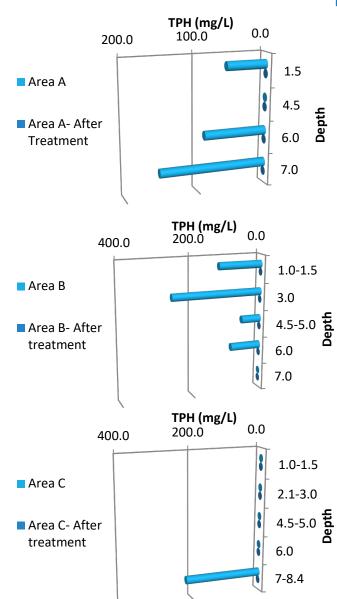

BTEX Concentrations (mg/L) in Water



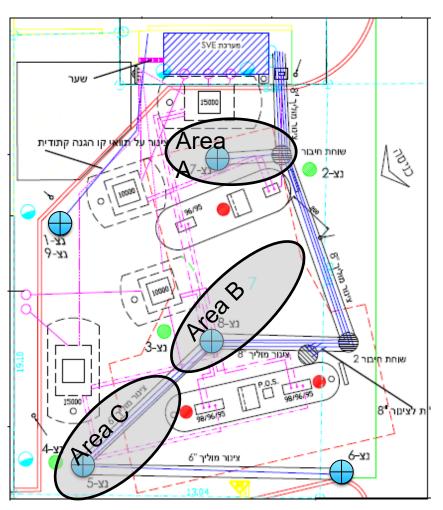
♦ MW-5 ca. 25 ppm to < 5 ppb within 12 months</p>

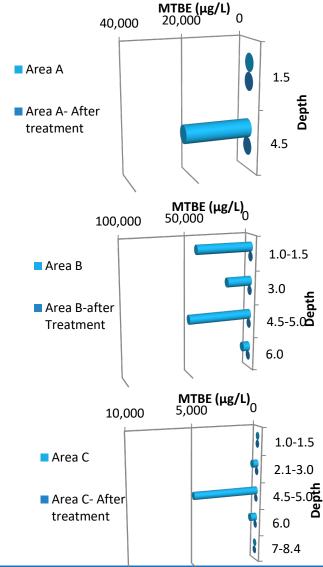

Dissolved Oxygen (DO)


GW field parameters (ORP)



Soil / Groundwater BTEX (18 mo)





Soil / Groundwater MTBE (18 mo)

P

- From >50 ppm to < 0.05 ppm</p>
- ◆ 5 EBR Wells, Control Panel, O&M < \$150K
 </p>



Case Study – Sonol Kiryon Site

P

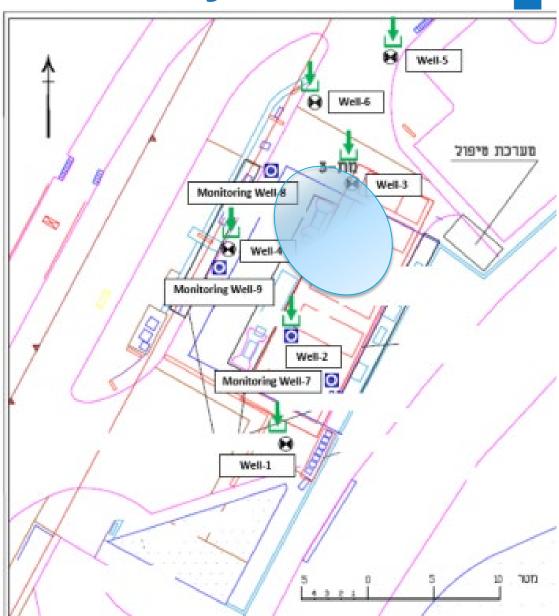
- Operating Gasoline Station
 - Groundwater at 3 m bgs
 - sandy aquifer

תיאור צגרת ומילוי הבאר						תיאור הקרקע	
הערות	פרטים	מילוי	צטרת	מילוי	PID (ppm)	סוג חתך הקרקע	עומק (m) מ עד
	8ייטחת ברזליי LBL					. אספלט	0.0 - 0.1 0.1 - 0.2
	מלט (50 לי מים . 100 קייג מלט)		3"				0.2 - 0.3
	פקק בנטונייט					חול (SP)	0.3 - 0.6
V	חול קוורצי						0.6 - 1.0 1.0 - 3.00
÷							3.0 - 8.0

Case Study – Sonol Kiryon Site

5 EBR (May 2018)

5 Monitoring Wells



4 New Monitoring Wells

LNAPL Present

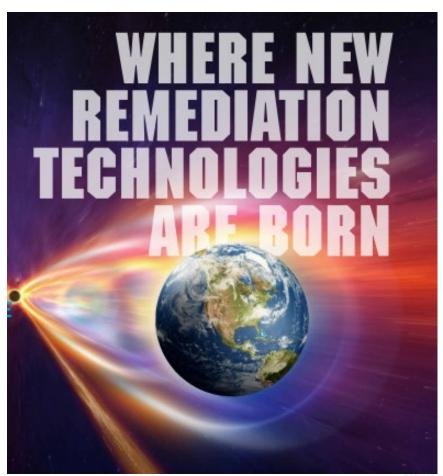
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis									
Evaluation Date	evaluation Date: 12/2018 Job ID: 07-2018 Sonol Hakirion								
	SONOL HAI				Constituent	MTBE			
Conducted By	E.Elgressy I	td		С	oncentration Units	mg/L			
Samp	oling Point ID:	Well 1	Well 2	Well 3	Well 4	Well 5	Well-6		
Sampling Event	Sampling Date			MTBE	CONCENTRATIO	N (mg/L)			
1	10/2/2014	7.9	26	188	62			\top	
2	18/6/2014	5.4	30	94	50				
3	17/11/2014	5.8	8.6		LNAPL Lens	70	24.5		
4	19/10/2015	0.98	60		20	10	39		
5	28/2/2016	1	15	LNAPL Lens	21	0.4	15		
6	6/7/2016	1.9	6.4		8.9	1.3	6.1		
7	10/10/2016	1.19	2.1		6.6	0.82	5.5	\perp	
8	22/2/2017	2.2	2.2		12	7.7	0.59		
9	14/6/2017	1.08	10.1		22	14	1.66	\perp	
10	23/10/2017	0.45	12		17	0.25	1.46	\perp	
11	21/5/2018		7						
12	25/10/2018	0	0	LNAPL Lens	1.5	0.05	0.09		
13									
14	Activation	of EBR 15/07/2018						\perp	
15								\perp	
16								₩	
17								+	
18								+	
19								₩	
20	4 - #1/i-+i	1.02	1.12	0.47	0.07	104	4.20	_	
	t of Variation:	1.03 -31	1.13 -30	0.47	0.87 -23	1.94 -16	1.29 -30		
	I Statistic (S): dence Factor:	99.2%	97.8%	-1	97.7%	94.0%	100.0%		
	tration Trend:	Decreasing	Decreasing		Decreasing	Prob. Decreasing	Decreasing		

5 months EBR operation (as of December, 2018)

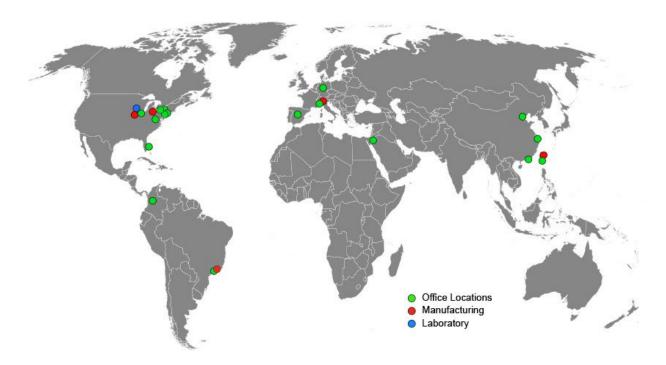
Groundwater COIs ug/L (7 months)

Well	Date	MTBE	Benzene	Xylenes	ТВА	CFUs/ml
MW-7	5/2018	11,000	0.21	60		
	12/2018	50	<5	<5	7,100	24,000
MW-8	5/2018	5,000	<5	<5		-:-
	12/2018	2,800	<5	40	114,000	7,700
MW-9	5/2018	7,000	<5	<5		
	12/2018	120	<5	<5	5,600	100,000

- ♦ Toluene, Ethylbenzene <5 ppb
 </p>
- ♦ 6 EBR Wells, Control Panel, O&M < \$180K</p>



Learn More About EBR MOA



Provectus Environmental Products

- Complimentary Site Evaluation
- Complimentary review of quarterly field performance data with every project
- Laboratory Treatability Studies
- Turn-Key, Pay-for-Performance Contracting Options
- Project Specific Guarantees and Warranties

- USA (Florida, Illinois, New Jersey, Ohio, Pennsylvania, Wisconsin)
- Australia, Brazil, Canada, China, Colombia, Germany, Israel, Italy, Spain and Taiwan

Future R&D / Continued Studies

Validate ROI and Effective Propagation Time, Vertically and Horizontally (ESTCP submittal Mueller, Shi, Ginn, and Tratnyek 2019)

- ORP / Measurements (indirect)
- COI Reductions (indirect)
- ► <u>Fe2+/Fe3+ measurements:</u> Particle size (BEM) and mineralogy (XRD patterns, TEM micrographs, XPS spectra and high-resolution scan); possible using variations of Bradley and Tratnyek (2019).
- ◆ <u>Self-Potential Method</u> (direct): passive geophysical analysis based on the natural occurrence of electrical fields resulting from the existence of source currents in the conductive subsurface (Fachin *et al.*, 2012)
- ▶ <u>Electrical Resistivity Tomography</u> (direct): measures variations in electrical conductivity associated with changes in pore water ionic strength or water phase saturation.
- <u>Lab-fabricated oxygen microprobes/sensors</u> (direct): validate the distribution of ROS.
- Simple and Predictive Models: facilitate PRB design and implementation