

Enhanced Bioremediation of a Consortium of Contaminants at a Historic Chemical-Production Facility

Eleanor M. Jennings, M.S., PhD

Claudia Walecka-Hutchison, Matt Whaley, Todd Tambling, Nikki Anderson, Rick Wenzel, and Robert Stuetzle (The Dow Chemical Company)

Jack Bunton (Parsons Corporation)

Site Introduction

• Historic, former manufacturing plant for specialty chemicals and adhesives

- Operations began in 1952, discontinued in 2001
- Currently decommissioned and dismantled, undergoing active remediation in some target areas

Area of Concern

- One of the more significant sources of remaining COCs at the Facility
- Bis-(2-chloroethoxy)methane (BCEM) manufacturing from 1955 until decommissioning, used for synthetic rubber production

Area of Concern, from Google Earth (Feb 2017)

Area of Concern

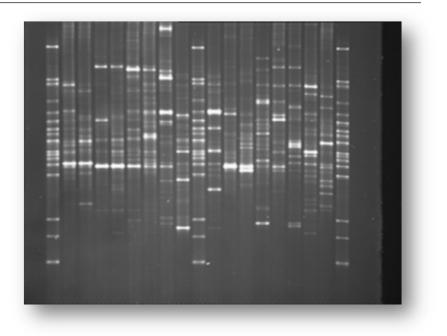
- Current primary COCs include:
 - 2-chloroethanol
 - bis(2-chloroethyl)ether (BCEE)
 - bis(2-chloroethoxy)methane (BCEM)
 - 1,2-dichlorethane
 - 1,4-dioxane
 - 1,2,3-trichloropropane

Area of Concern, from Google Earth (Feb 2017)

Chlorinated Ethenes

- 1,1-Dichloroethene
- cis-1,2,-Dichloroethene
- trans-1,2-Dichloroethene
- Vinyl Chloride

Chlorinated Ethanes


- Chloroethane
- 1,1-Dichloroethane
- 1,1,1-Trichloroethane
- 1,1,2-Trichloroethane

2014-2018: Indigenous Microbial Community Assessments

- 2014: qPCR analyses
 - 20 Genes: reductive dechlorination populations, functions
 - 9 Genes: metabolisms, co-metabolisms
 - 3 Genes: general population groups
- 2015: Lab-based, in-situ bioremediation treatability studies performed
 - Biostimulation via two different electron donors
 - Bioaugmentation with commercially-available dechlorinating microbes
 - All primary COCs evaluated
- 2018: Repeated above qPCR analyses, new locations

• Similar results for both years, generally between sample locations

Total microbial population size approximately 10⁵ cells/mL

 Genes quantifying dechlorination metabolic pathways and populations generally between 10⁰ – 10³ cells/mL

Results of 2015 Lab-Based Groundwater Treatability Studies

- 1,4-Dioxane, BCEE
 - Not reduced by either biostimulation or bioaugmentation
- BCEM
 - Was reduced at 40 °C and pH 3
 - 1,000 mg/L to BDL in 200 days
 - Not further reduced by either biostimulation or bioaugmentation
 - Hydrolysis?
- 2-Chloroethanol:
 - Reduced by both biostimulation and bioaugmentation
- 1,2-DCA:
 - Was reduced by both biostimulation and bioaugmentation
 - Effectiveness possibly reduced by 1,4-dioxane and BCEM concentrations

PARSONS

Overall Results of 2014 - 2018 Microbial Analyses

• Overall, initial prospects of indigenous biodegraders uncertain

- qPCR limited targeted only those genes that were previously identified
 - Population and functional genes commonly associated chlorinated ethenes, ethanes
 - Common metabolisms, co-metabolisms
- Not likely to capture more exotic microbes, biodegradation pathways

 Biostimulation / bioaugmentation studies run under anaerobic conditions standard for common chlorinated ethenes, ethanes • Interim-measure, groundwater treatment system to treat recovered groundwater

• Needed more efficient remediation method to better target variety of compounds found, under actual site conditions

- Plan: perform multiple test studies to discern best treatment option
 - Primary focus: 1,4-dioxane removal

SEE- Aerobic Bioreactor Study

 Steam enhanced extraction (SEE) was evaluated as base for in-situ source treatment

Proven remedial technology for DNAPL and VOC's

 Concern: concentrate COCs, require additional steps for GW treatment

- Solution: combine SEE with other technologies such as aerobic bioreactor seeded with sewage sludge
 - Bunton et al., 2018

Part of Parsons' SEE-Bioreactor

Aerobic Bioreactor Study – Unexpected Results

• Potential biological attenuation of key site COCs

Percent of Influent Mass Attributable to Removal by Biological Reaction					
Compound	1,2-DCA	1,4-Dioxane	2-Chloroethanol	BCEM	BCEE
Percent	77	8.0	> 99	> 99	> 87

- Significantly changed our focus going forward
- Suggested bioremediation as possible in-situ treatment method

New Questions to Answer

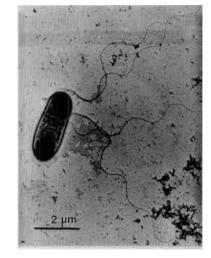
- Primary COC biodegraders
 - From on-site groundwater?
 - From sewage sludge used to seed the SEE study?

- Bioaugmentation more efficient study path?
- What environmental conditions would maximize overall COC biodegradation in-situ?

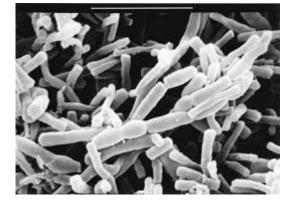
New Questions to Answer

- Primary COC biodegraders
 - From on-site groundwater?
 - From sewage sludge used to seed the SEE study?
- Bioaugmentation more efficient study path?
- What environmental conditions would maximize overall COC biodegradation in-situ?

- Genetic investigation into indigenous microbial community
- Biostimulation, bioaugmentation studies
- Bioreactor study
 data


 Laboratory bioaugmentation studies • In situ pilot study

• Full scale implementation


Phase 2: Lab Studies Using Bioaugmentation Cultures

 Multiple rounds of bioaugmentation lab studies conducted by the Facility with Parsons assistance

- Using two cultures:
 - Pseudonocardia ENV 478
 - Xanthobacter ENV 481

Pseudo. image: Lee et al., 2001

 Both come from taxonomic phyla known for capabilities to degrade complex contaminants, including chlorinated compounds

Pseudonocardia ENV 478

- Known biodegradation of:
 - BCEE, co-metabolic
 - 1,4-Dioxane, co-metabolic

- No literature precedent for biodegradation of:
 - BCEM
 - 2-chloroethanol
 - 1,2 DCA

Xanthobacter ENV 481

- Known biodegradation of:
 - BCEE

- No literature precedent for biodegradation of
 - BCEM
 - 1,4-Dioxane
 - 2-chloroethanol
 - 1,2 DCA

Lab Studies Using Bioaugmentation Cultures: What We Need to Understand

- Microbial biodegradation potential of COC's
 - Individually, co-mingled
- Required environmental conditions for maximum effectiveness
 - Oxygen requirements
 - Additional carbon source to support co-metabolism (?)
 - Salinity, pH tolerance
 - Cytotoxicity assessments in presence of various COC concentrations
 - Cell density needed to maintain efficient biodegradation

Pseudonocardia ENV 478

- Known biodegradation of:
 - BCEE, co-metabolic
 - 1,4-DX, co-metabolic

- Biodegradation observations:
 - BCEM
 - 2-chloroethanol
 - 1,2-DCA

Xanthobacter ENV 481

- Known biodegradation of:
 - BCEE

- Biodegradation observations:
 - BCEM
 - 1,4-DX
 - 2-chloroethanol
 - 1,2 DCA

Walecka-Hutchison et al., 2019 and Whaley et al., 2019

Translating Lab Results Into Phase 3: Pilot Study

• How to maximize overall COC biodegradation under in-situ conditions?

• What happens when ENV 478 and ENV 481 are together?

• Biodegradation mechanisms?

• Difference between aquifers?

• Captured biodegradation of complex chlorinated contaminants

• Part of much larger, multi-phase project demonstrating enhanced bioremediation of unique, complex set of contaminants

- Setting stage for upcoming in-situ pilot study
- Highlights key information, important questions that need to be answered to ensure success

Questions?

Acknowledgements :

Dan Griffiths

Jim Schuetz

Glenn Ulrich

Ted Schoenberg

Les Cordone