Optimizing EVO Formulations

Michael Lee, PhD Fritz Hostrop Richard Raymond, Jr. Terra Systems, Inc.

Baltimore, MD Tuesday April 16th, 2019

Terra Systems SRS® EVO Products Designed

for Enhanced Anaerobic Bioremediation

SRS [®] -SD	EVO for Maximum Radius of Influence		
SRS [®] -FRL	EVO for Maximum Retention for High Groundwater Flow Rates		
SRS [®] -SE	Self-emulsifying EVO with 100% Fermentable Carbon, No Nutrients		
SRS [®] -Basic	EVO without Nutrients or Quick Release Substrate		
SRS [®] -ZVI (micro scale iron)	Anaerobic and Abiotic Reduction; Cl Solvents; DNAPL; PRB		
SRS [®] -EZVI (fine 2-3 μm iron)	Anaerobic and Abiotic Reduction; Cl Solvents; DNAPL; PRB		
SRS [®] -NR	EVO for Remediation of Nitrate and Perchlorate		
SRS [®] -STA	EVO Includes Shear Thinning Agent for Heterogeneous Aquifers		
SRS [®] -M20 or M40	Moderate to High Cr $^{6+} \rightarrow$ Cr $^{3+}$ Reduction; Cl Solvents		
SRS [®] -B _{uffered}	EVO for Low pH Aquifer		
SRS [®] -C _{ustom}	Custom Formulations, Packaging, 50/50 Mix of SRS [®] -SD and SRS [®] - FRL, Bromide or Dye Tracer, etc.		

Terra Systems owns and operates its own manufacturing facility

Combined SRS and MicroZVI Upstate New York Airport

Former Fire Training Pit Geology – overburden and fractured bedrock Injected 3,800 gal of 45% SRS with 2-3 µm MicroZVI in August 2015

INCORPORATED

Second application of 2,060 gallons of SRS and MicroZVI in June 2018

Nitrogen Impact of Cape Cod Salt Ponds

• Septic systems used for ~85% of wastewater treatment on Cape Cod

Modified from USGS 2013

- Multiple smaller plumes that can combine into larger nitrate groundwater plumes that discharge into coastal waters. Loading is cyclic.
- Remedial goal is to reduce nitrogen load in order to achieve TMDL (total maximum daily load).
- High groundwater flow rate of 1-3 ft/day

Denitrification Permeable Reactive Barrier (PRB)

- Denitrifying bacteria ubiquitous
- $NO_3^- \rightarrow NO_2^- \rightarrow NO + N_2O \rightarrow N_{2(g)}$
- Emplace carbon substrate into PRB
- Intercepts and treats nitrate plume
- EVO can be injected into PRB to provide carbon for extended period
- Public concerned about migration of oil into surface water and persistence/rejuvenation frequency

BENCH SCALE TEST

- Evaluate EVO loading and formulations to support denitrification
 - Effectiveness
 - Persistence
 - Migration community concern
- Soil & groundwater from Acapesket Cape Cod site
- 3 column reactors (3.8 ft, 2" diam)
 - Column 1 30.8 g SRS[®] & 277 mL water filled to 21 in
 - Column 2 61 g SRS[®] & 555 mL water filled to 27 in
 - Column 3 61 g SRS[®], 25 g ZVI, & 513 mL water filled to 27 in
- Influent
 - ~20 mg/L nitrate
 - 10-43 mg/L sulfate
- Flow rate = 1.2 ft/day
- 354 days (98-109 pore volumes)

BENCH SCALE TEST RESULTS

BENCH SCALE TEST CONCLUSIONS

- Complete continuous removal of nitrate for over 317 days using indigenous bacteria
 - 83-93 pore volumes
- Emulsion breakthrough no longer observed after 1.3 -2.4 pore volumes in Columns 1 & 2
- When TOC <4.0 mg/L, nitrate began to appear
- Sulfate consumed, but began to increase after 210 days
- No difference in longevity or effectiveness with increased loading or ZVI
- <u>Can the emulsified vegetable oil be made stickier?</u>

April 16, 2019

MORE BENCH SCALE TESTING

- Day 355 connect all 3 columns together (11.4' column)
- Feed Column 1 with 31 g SRS[®]-NR
 - large droplet (5 micron mean droplet)
 - anionic surfactant
 - no lactate
- Influent 21 to 24 mg/L NO₃
- Flow rate 1.9 ft/day
- Emulsion did not appear in effluent
- Sustained nitrate removal at 2.9 mg/L TOC in effluent
- SRS[®]-NR formulation better retained on soil matrix

FIELD PILOT TEST DESIGN

ferra Systems

- 110 foot PRB
- 17 Injection Points
 - 1 and 2 rows of points
 - 10 foot spacing
 - 36 to 68 feet bgs
- Monitoring well network
 - Upgradient
 - Downgradient
 - 10-75 feet from PRB
- 14% pore volume target
- 10,800 gallons injected in 11/16
- SRS-NR (14%)
 - Diluted 4.3:1 in field

ELDREDGE PARK PRB MONITORING

- Initial testing of PRB monitoring wells baseline concentrations measured as high as 35 mg/L nitrate-nitrogen
- Wide range of nitrate concentrations at different sampling locations
- No migration of EVO detected during injection (monitoring turbidity and dissolved organic carbon 7, 10, 20, 50 and 100 ft. downgradient)

ISOTEC

Typical Groundwater Flow Direction

Based upon initial characterization, expected groundwater flow through PRB to north. Actual flow was more to east at about 0.22 ft/day.

SECOND SRS-NR INJECTION JUNE 2018

- 100 foot PRB
- 20 Injection Points
 - 2 rows of points
 - 10 foot spacing
 - 32 to 70 feet bgs
- 14,800 gallons SRS-NR injected
- Diluted SRS-NR 4.3:1 in field
- 225 gallons 60% sodium lactate
- Added sodium bicarbonate

C-Zone (shallow) Nov 2016

<text>

NO3-N (mg/L)

April

2018

DOC (mg/L)

NO3-N (mg/L)

B-Zone (Intermediate Nov 2016

April 2018

Jan 2019

Terra Systems

DOC (mg/L)

NO3-N (mg/L)

A-Zone (Deep) Nov 2016

April

2018

MW-B2010C EA and DOC

Elredge Park Conclusions

- 1. Where DOC exceeded 10 mg/L, generally good removals (average of 80.9%) of nitrate-N.
- 2. The water table sloshes around due to rainfall and septic tank discharge, but groundwater flow is predominantly to east at 0.2 to 0.3 ft/day.
- 3. DOC retained within about 50 feet from injection wells.

NEW SRS[®]-STA FOR HETEROGENEOUS FORMATIONS

SRS[®]-STA combines the standard SRS products with a shear thinning agent for heterogeneous formations. When injected at high velocity, the shear thinning agent promotes cross-flow from high to low-permeability zones.

Laboratory sandbox studies have demonstrated that SRS[®]-STA promotes transport into tighter and more permeable layers.

Sandbox with fine, coarse, fine sands with water

Sandbox with fine, coarse, fine sands with SRS[®]-STA

April 16, 2019

SRS + STA retained on column longer than SRS alone

PREVIOUS FIELD TESTS FOR HETEROGENEOUS FORMATIONS

Site	Geology	Amendments	Results	References
Joint Base Lewis McChord	Gravel, clean sand, and interbedded sands and gravels	Ethyl Lactate and STA	Increased coverage from 49% with bromide tracer to 69% with ethyl lactate and SFT and chloride tracer	Adamson et al. 2014 of GSI
Well 12A site in Tacoma, WA with DNAPL	Medium grained sand with gravel and silt, to fine- grained silt, to highly variable sand and gravel.	Emulsified vegetable oil with STA loading based upon pressure and injection flow rate	Increases in cis- and trans-DCE, and VC within 3 months and ethene within 8 months. Amendment remaining after 8 months.	Smith et al 2014 and 2015 of CDM Smith and Lynch et al 2016 of EPA

Conclusions from STA

- STA can promote distribution in heterogeneous formations
- STA can extend SRS retention in sandy formation
- Looking for a field site for demonstration project

Acknowledgements

SRS-EZVI Project – John Freim - Regenesis

SRS-NR Project

- Paul Dombrowski Isotec See Poster in B6 Biobarrier Installation and Management on Wednesday
- James Begley MT Environmental Restoration
- Thomas Parece, Julianne Marrion, and Betsy Shreve AECOM

SRS-STF Project

- Jenny Lee
- Sam Lee

Questions?

Dr. Michael D. Lee Vice President, Research and Development Terra Systems, Inc. (lab) 302-798-9553 (cell) 302-753-8149 Email: mlee@terrasystems.net www.terrasystems.net

