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Background

Chlorobenzenes 
• Legacy contaminants, present in over 8% of EPA National 

Priority List sites (1990 estimate)
• Unique physical and chemical properties: sparingly 

soluble, semi-volatile, aromatic, chlorinated solvents
• Known health and ecotoxicity risks, regulated in drinking 

water (1-600 µg/L )
• Large spill sites provide challenges for remediation, but 

also fertile test-beds for fundamental research and new 
technologies 

Standard Chlorine of Delaware 
Superfund Site

Lorah et al. 2014.  USGS
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Background

Standard Chlorine Superfund Site
• 2,000,000 L of mixed mono-, di-

and tri-chlorobenzenes (CBs) 
released from tanks and 
containment pond

• Extensive remediation at 
industrial site (excavation, barrier 
wall, pump and treat)

• Adjacent wetland remains highly 
contaminated with DNAPL 
concentrations

Standard Chlorine of Delaware 
Superfund Site

ATSDR. 1990. Toxicological Profile for Chlorobenzene. http://www.epa.gov/reg3hscd/npl/DED041212473.htm

Lorah et al. 2014.  USGS
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Surface 

Water tableUnsaturated zone

Groundwater flow

DNAPL spill

Surface waterSaturated zone

Dissolved plume

Area of interest

Remediation challenge
• Long-lasting dissolved CB plumes are discharged from subsurface, 

through wetlands, and into watershed

• At shallow depths, anaerobic porewater is aerated by surface-
associated processes to create an anaerobic-aerobic “interface” in 
sediments
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• Anaerobic reductive dechlorination
• Highly chlorinated CBs 

thermodynamically favorable
• Toxic daughter products remain
• Mineralization possible, but MCB stall 

common
• Aerobic oxidation– oxygen-mediated 

process
• Less chlorinated CBs thermodynamically 

favorable (<= TeCB)
• Complete mineralization

Anaerobic pathway
Aerobic pathw

ayCO2 CO2 CO2 CO2

CB biodegradation pathways
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Research questions

CB-Reduction

(CB-Oxidation)

Parsons. 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. AFCEE, NFEC, ESTCP 457 pp, August 2004

• What is the potential for CB biodegradation at anaerobic-aerobic interfaces?
• How do natural geochemical conditions affect the dynamics of the 

degradation processes?
 e- donor availability
 Alternative e- acceptor availability

• Redox conditions can be temporally and spatially 
heterogeneous at sites

• Other externalities (chemical spills, flooding, 
seasonality) introduce even more perturbation

• SCD site survey
 Average 14-56 mg/L DOC 
 0.42 – 1090 mg/L sulfate
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Simulating the interface

Conceptual model

Contaminated 
Anaerobic 

Water

Diluted 
Aerated Water

Aerobic
zone

Anaerobic 
zone

Oxygenated
Side-stream

(≈ air saturation)

Experimental design

Simplifications

Natural water  Defined synthetic 
media

Complex DOC 
source 

 Sodium lactate 
model donor

Variable flow 
and oxygen flux

 Constant-flow 
system
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Simulating the interface

1. Filter Sand 2. Site Sediment 
+ Filter Sand

Anaerobic 
degrader culture 
(WBC-2, SiREM 

Labs)

Aerobic 
degrader 

enrichment

Packed columns
Bioaugmentation 

cultures
Upflow simulated 

groundwater system

• 300-day continuous flow study
• Low-sulfate, sterilized simulated media
• Aeration to ~ 7 mg/L O2 in aerobic zone
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Proof of concept

Cycled 15.5, 31, and 155 mg/L sodium lactate (NaLac) 
influent e- donor doses ( 5-50 mg/L DOC)
• Sustained anaerobic and aerobic CB degradation 

over time
• Dechlorination pathway: 1,2,4-TCB  13/14-DCB 

MCB
• Degradation pathways spatially separated across 

interface

+ Reductive 
Dechlorination

+ Aerobic 
MineralizationFilter SandSediment + Sand

Column Flow 
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Influence of electron donor concentration
↑NaLac
 Enhanced reductive 

dechlorination 
 Minimal addition (31 mg/L) 

enhanced aerobic degradation
 Above threshold (155 mg/L), 

inhibition of aerobic degradation 
– residual organic acids and 
sulfides depleted O2

Sand matrix
 Sensitive to NaLac dose
 Greatest observed mineralization 

Sediment addition
 Stable, enhanced dechlorination 

at all inputs

Increasing NaLac concentration
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Microbial community profile

Dehalobacter

Genera

• Dehalobacter enriched in biofilm as 
anaerobic dechlorinator

• High enrichment in sediment column 
(up to  50% of community) 

• Low enrichment (<1%) in sand column
 More sensitive to lower concentrations, but 

same order of magnitude degradation

• Sediment column enriched with 
functional bacteria
 Desulfosporisinus
 Methanosarcina
 Thiobacillus

• Sand enriched with functionally 
ambiguous biofilm-forming bacteria 
(Comamonas, Pseudomonas)

• Diverse aerobic diversity – difficult to 
determine aerobic bacteria
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Influence of electron and acceptor dose
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• 300-day parallel column study

• Simple sand matrix system

• Vary nitrate and sulfate doses over time

Stepped e- acceptor concentrations in experiment 
phases

Phase Time 
(d)

NO3
- SO4

2-
n

mM mg/L mM mg/L
I 60 0 0 0.15 14 7
II 60 0.15 9.3 0.5 48 5
III 58 0.5 31 2.5 240 6
IV 103 2.5 160 10 960 3
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Influence of electron and acceptor dose Stepped e- acceptor concentrations in experiment 
phases

Phase Time 
(d)

NO3
- SO4

2-
n

mM mg/L mM mg/L
I 60 0 0 0.15 14 7
II 60 0.15 9.3 0.5 48 5
III 58 0.5 31 2.5 240 6
IV 103 2.5 160 10 960 3

↑ Nitrate 
 ↓ Reductive dechlorination
 ↑ Aerobic degradation
 Significant change >= .5 mM

↑ Sulfate
 ↓ Reductive dechlorination
 ↓ Aerobic degradation
 Significant change >=2.5 mM 
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Nitrate effect on electron donor / acceptor utilization
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Anaerobic reduction processes

Aerobic oxidation processes

• Majority of e- donor (>99.5%) not 
used for CB dechlorination (all 
columns)

• ↑NO3
-

 Nitrate reduction outcompetes other 
anaerobic processes, forming 
permanent e- donor sink

 Depletes residual organic acids within 
anaerobic zone

• ↓ NO3
- - competition for limited O2limits CB oxidation

• ↑NO3
-

 Inhibited organic acid and sulfide 
production minimizes competition for 
O2

 CB oxidation dominates
*No NO3

- reduction in aerobic zone, so 
NO3

- not used as supplemental e-

acceptor for CB degradation
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Sulfate effect on electron donor / acceptor utilization
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Anaerobic reduction processes

Aerobic oxidation processes

• ↑SO4
2- increases sulfate reduction, 

suppressing propionate formation and 
CB reduction. Methanogenesis and 
acetate fermentation persist

• Unlike NO3
-, reduced sulfur easily re-

oxidized by aerobes

• ↑SO4
2- - increased competition for O2by reduced sulfides, limiting aerobic 

degradation

• Sulfur detrimental to both anaerobic 
and aerobic CB degradation 
processes, essentially wasting 
donor/acceptor as intermediate 
between lactate and O2

0
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• Both anaerobic and aerobic pathways sustained in model 
anaerobic-aerobic interface
 However, necessity for reductive dechlorination to facilitate aerobic 

degradation not demonstrated. Degradation potential of native and 
bioaugmented cultures needs to be determined

• Sediment amendment facilitated enhanced anaerobic 
processes

• DOC had stimulatory effect on both aerobic and anaerobic 
degradation processes, but above certain threshold inhibited 
aerobic degradation by increasing O2 demand

• NO3
- and SO4

2- negatively impact reductive dechlorination and 
compete for e- donor

• NO3
- enhanced aerobic degradation, serving as sink for 

competing e- donors

Key points
CO2
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• High potential for natural site matrices to facilitate passive remediation of porewater CBs
• Under site-simulated conditions...

 1.8-6.9 mg/L 1,2,4-TCB continuously degraded aerobically (rates > 1.6 mg/L-hr-1) across simulated interface
 1.5 kg/m2-year-1 dechlorinating capacity
 0.32 kg/m2-year-1 mineralization capacity

• Dehalobacter isolated from WBC-2 culture dominated sediment-associated anaerobic communities biofilm, facilitating 
highly efficient reductive dechlorination 

• Experiments demonstrated robust ability of microbial communities to recover functionally from shifting redox conditions
• Sites with high sulfate may be particularly difficult to treat with anaerobic and aerobic degradation due to significant redox 

cycling
• Additional remediation strategies (e.g. reactive barrier) have potential to further enhance degradation based on site 

characteristics

Remediation implications

Further studies
• Characterize shifts in microbial communities under varied redox conditions (in progress)
• Evaluate reactive barrier treatment on degradation at interface (sorption and non-steady state effects) (M. 

Lorah)
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Questions?

• Dr. Sarah Preheim
• Dr. Eric Sakowski

• Huan Luong
• Shun Che

• Amanda Sun
• Nicole Cohen

• Annabel Mungan
Superfund Research Program 
(Grant #:5R01ES024279-02)

Steven Chow (schow@jhu.edu)

Bouwer Research Group: bouwerlab.jhu.edu
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