Application of Passive Sampling to Predict PCB Microbial Dechlorination Kinetics in Sediment

Trevor Needham and Upal Ghosh (University of Maryland Baltimore County, Baltimore, MD, USA)

Kevin Sowers (Institute of Marine and Environmental Technology, Baltimore, MD, USA)

Background

Polychlorinated Biphenyl Dechlorination in Aquatic Sediments

John F. Brown, Jr., Donna L. Bedard, Michael J. Brennan, James C. Carnahan, Helen Feng, Robert E. Wagner

Science, New Series, Vol. 236, No. 4802 (May 8, 1987),

Reductive Dechlorination of Polychlorinated Biphenyls: Threshold Concentration and Dechlorination Kinetics of Individual Congeners in Aroclor 1248

YOUNG-CHEOL CHO,[†] ROGER C. SOKOL,^{‡,§} ROBERT C. FROHNHOEFER,[†] AND G-YULL RHEE^{*,†,§}

Environ. Sci. Technol. 2003, 37, 5651-5656

In Situ Stimulation of Aerobic PCB Biodegradation in Hudson River Sediments

M. R. Harkness, J. B. McDermott, D. A. Abramowicz,* J. J. Salvo,
W. P. Flanagan, M. L. Stephens, F. J. Mondello, R. J. May,
J. H. Lobos, K. M. Carroll, M. J. Brennan, A. A. Bracco,
K. M. Fish, G. L. Warner, P. R. Wilson, D. K. Dietrich, D. T. Lin,
C. B. Morgan, W. L. Gately

SCIENCE • VOL. 259 • 22 JANUARY 1993

Long-Term Recovery of PCB-Contaminated Sediments at the Lake Hartwell Superfund Site: PCB Dechlorination. 1. End-Member Characterization

VICTOR S. MAGAR,*,[†] GLENN W. JOHNSON,[‡] RICHARD C. BRENNER,[§] JOHN F. QUENSEN, III,^{II} ERIC A. FOOTE,[†] GREG DURELL,[⊥] JENNIFER A. ICKES,^{†,#} AND CAROLE PEVEN-MCCARTHY[⊥] ⁻ Environ. Sci. Technol. 2005, 39, 3538-3547

In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet?

Kevin R Sowers¹ and Harold D May²

Current Opinion in Biotechnology 2013, 24:482–488

Dehalobium chlorocoeria

- Sediment free co-culture containing *Desulovibrio*
- Capable of halorespiration of chlorinated organics: PCB, PCP, PCE, and Dioxin
- Can be grown to high cell densities (~1x10⁸ cells/mL) on PCE
- Dechlorinate double flanked meta and para chlorines

Passive Sampling

- Low Density Polyethylene (PE) sheets
- Well established partitioning coefficients for a range of hydrophobic contaminants

$$K_{PE} = \frac{C_{PE}}{C_{water}}$$

- K_{PE} ranges from 10⁴-10⁸ for PCBs based on hydrophobicity
- PE sampling enables accurate measurements of the freely dissolved PCB concentration at < 1 nM concentrations

Validating work by Lombard et al. (2014)

Defining Buffering Capacity:

$$\frac{dC_w}{dt} * \left(\frac{V_w * + m_{PE} * K_{PE}}{V_w}\right) = C_w * k_b$$

$$k'_b = k_b * \left(\frac{V_w}{V_w * + m_{PE} * K_{PE}}\right)$$

$$\frac{C_w}{C_w o} = e^{-k'_b t}$$

- Assume all phases are at equilibrium
- Assume that mass transfer is faster than the microbial rate

Experimental Design

Materials:

- 90 mL medium salt media (Berkaw et al 1996)
- 10 mM sodium formate
- 0.15 g PE sampler
- 10 mL DF1 inoculum (~1x10⁷ cells/mL)

Sampling:

PE Removed at days 0, 1, 7, 14, 21, 28, and 42

Cell density qPCR at days 0, 7, and 42

First order Kinetics

Initial aqueous concentrations of PCB 61:

- 0.41 nM blue triangle
- 0.11 nM red circle
- 0.0043 nM black diamond

Comparing Results

Matrix	Cell Density	PCB 61 _{aq} initial (nM)	PCB 23 _{aq} accum rate (nM/d ⁻¹)	Std Error	r ²	k _b ′ (d⁻¹)	CF	k _b (d⁻¹)	k _b (d ⁻¹) (10 ⁶ cell/mL)
POM*	1.20E+06	3.23E-01	9.19E-03	4.0E-05	0.89	0.029	960	27	23
POM*	1.20E+06	9.01E-02	3.08E-03	8.5E-05	0.97	0.034	960	33	27
POM*	1.20E+06	3.33E-02	1.20E-03	3.3E-05	0.98	0.036	960	35	29
POM*	1.20E+06	8.56E-03	2.78E-04	3.0E-05	0.84	0.032	960	31	26
PE	1.60E+06	4.10E-01	9.30E-02	5.3E-02	0.98	0.23	309	70	44
PE	1.60E+06	1.10E-01	2.38E-02	1.3E-02	0.93	0.22	309	67	42
PE	1.60E+06	4.30E-03	8.00E-04	5.8E-05	0.87	0.19	309	57	36

* Results reported by Lombard et al. (2014)

Do the rates apply in sediments?

Sediment Experimental Design

Materials:

- 10 g wet sediment
- 0.15 g of PE
- 80 mL E-CL media
- 10mM sodium formate
- 10 mL DF1 inoculum (~1x10⁷ cells/mL)

Sampling:

PE Removed at days 0, 1, 7, 14, 21, 28, and 42

Sediment at day 0 and 42 Cell density qPCR at days 0, 7, and 42

 $\frac{PCB \ 61_{o}}{1.3 \times 10^{-1}, 1.6 \times 10^{-2}, \text{ and } 5.1 \times 10^{-3} \text{ nM}}$

Incorporating Sediment into Buffering Capacity

$$\frac{dC_w}{dt} * \left(\frac{V_w * + m_{PE} * K_{PE} + m_{sed} * K_{sed}}{V_w}\right) = C_w * k_b$$
$$k'_b = k_b * \left(\frac{V_w}{V_w * + m_{PE} * K_{PE} + m_{sed} * K_{sed}}\right)$$
$$\frac{C_w}{C_w o} = e^{-k'_b t}$$

Predicting Dechlorination in Sediment Slurries

Sediment Concentrations

PE vs. Sediment Microcosm

Matrix	Cell Density	PCB 61 _{aq} initial (nM)	PCB 23 _{aq} accum rate (nM/d ⁻¹)	Std Error	r²	k _b ′ ** (d⁻¹)	CF	k _b (d⁻¹)	k _b (d⁻¹) (10 ⁶ cell/mL)
PE	1.60E+06	4.10E-01	9.30E-02	5.3E-02	0.98	0.23	309	70	44
PE	1.60E+06	1.10E-01	2.38E-02	1.3E-02	0.93	0.22	309	67	42
PE	1.60E+06	4.30E-03	8.00E-04	5.8E-05	0.87	0.19	309	57	36
PE+Sed.	5.60E+06	1.34E-01	1.50E-02	4.6E-03	0.84	0.14	1830	256	46
PE+Sed.	5.60E+06	1.70E-02	1.70E-03	5.6E-04	0.93	0.14	1830	249	45
PE+Sed.	5.60E+06	5. <u>10E</u> -03	3.00E-04	1.0E-04	0.92	0.07	1830	134	24

** Incorporating 20% slow desorbing fraction not bioavailable

Implications for Bioremediation

Implications for Bioremediation

Implications for Bioremediation

Summary of Results

- > Lombard et al. (2014) report k_b using POM to be 26 d⁻¹
- > Observe similar first order rate kinetics with PE $k_b = 41 \text{ d}^{-1}$
- > Accounting for 20% fraction not bioavailable in sediment slurries, $k_b = 39 \text{ d}^{-1}$
- In both sediment slurry and PE system, microbial kinetics determined by freely dissolved phase

Acknowledgements

Advisor:

Dr. Upal Ghosh

University of Maryland Baltimore County

Collaborators:

Dr. Kevin Sowers and Dr. Rayford Payne

Institute of Marine and Environmental Technology, UMBC

Dr. Birthe Kjellerup and Dr. Staci Capozzi

University of Maryland College Park

Funding:

Project ER-2135

Questions?

Trevor Needham tneedham@usgs.gov