

Transport of *Pseudonocardia* through Soil for Bioremediation of 1,4-Dioxane

David L. Freedman and Ángel A. Ramos-García Clemson Unversity

Department of Environmental Engineering & Earth Sciences April 17, 2019

- Most 1,4-dioxane plumes seem to be shorter than expected
- Finding evidence of natural attenuation is challenging
- Some plumes will require active remediation
- Bioaugmentation may be required
- How well do 1,4-dioxane degrading cultures move through soil?

n = 103 sites where dioxane and chlorinated solvents co-occur

1,4-Dioxane Aerboic Cultures for Bioagumentation

- Use 1,4-dioxane as a growth substrate
 - Best known is Pseudonocardia dioxivorans CB1190
 - Isolated from activated sludge
 - Tendancy to clump when grown in the lab; raises questions about movement through soil for bioaugmentation applications
- Cometabolize 1,4-D following growth on a primary substrate
 - Various isolates that grow on various substrate (methane, propane, butane, etc.)
 - Less propensity to clump?

Objectives

- Enrich and isolate 1,4-D degraders from 2 aquifers
 - Industrial site in the southeastern US
 - Industrial site in Europe
- Compare one of the aquifer isolates to CB1190 in movement through porous media
 - Sand
 - Silt

Adamson et al. (2017):

1,4-D Isolates

- Microcosms prepared with soil (20 g) + GW (50 mL)
 - Treatments evaluated natural attenuation, propane addition, and propane + propanotrophic culture
- Enriched microcosms with only 1,4-D and transfers to ammonium mineral salts medium (AMSM)
- Isolates obtained by repeated steaking on Noble agar + AMSM plates with 50 mg/L 1,4-dioxane
- Whole genome sequencing performed at the UNC-Chapel Hill Microbial Core Facility
- Pseudonocardia dioxanivorans strain CB1190 provided courtesy of Dr. Shaily Mahendra, UCLA

Isolate #1

Isolate #1

New samples of GW from site I collected

- Part of ESTCP Project ER-201730: Development of a Quantitative Framework for Evaluating Natural Attenuation of 1,1,1-TCA, 1,1-DCA, 1,1-DCE, and 1,4-Dioxane in Groundwater
- Biodegradation of 1,4-D observed in samples from one well
- Low rate constant is consistent with a slow rate of degradation in original microcosms
- VOC levels are low, non-inhibitory

Isolate #2

Isolates

- Significantly greater clumping and attachment by CB1190 versuses BERK-1
- Is this related to the origin of the isolates, i.e., activated sludge vs. aquifers?
- Hypothesis: BERK-1 will move through porous medium at a higher rate since it is less "sticky"

CB1190

BERK-1 from site II

BERK-1 from site I

Movement of Isolates

- Glass tube: 0.87" inner diameter x 11.8" long;
 5" filled with sand or silt
- Glass wool plug at base retained the sand or silt

Inocula:

- 6 mL of CB1190 or BERK-1 grown on 1,4-dioxane;
- ~0.13 mg protein/mL (~10⁸ cells/mL)
- Positive control: directly inoculate the MSM

Movement of Isolates: Sand

Movement of Isolates: Sand

Movement of Isolates: Sand

Movement of Isolates: Silt

Movement of Isolates: Sand vs. Silt

Conclusions

- 2 isolates obtained from aquifers; same genus and species as *Pseudonocardia dioxivorans*, different strain
- Likely presence of BERK-1 at southeastern US site confirmed with a ¹⁴C assay; low 1st order rate consistent with microcosms
 - In situ 1,4-D degraders probably limited by low oxygen and/or nutrients
- CB-1190 initially moved more slowly than BERK-1 through sand and silt, but made up for this by a higher rate of degradation
- Clumping behavior of cultures grown on rich medium is not necessarily a good predictor of transport *in situ*
 - Transport may be facilitated by conditioning the cultures, e.g., starvation response to reduce size and clumping
- Need to perform continuous flow column tests and develop a predictive model for microbial transport

Modeling Approach for Transport of Microbes through Soil

Perform column studies to determine parameters

Questions?

