

# DOCUMENTING IN SITU REACTIVE IRON MINERAL FORMATION WITHOUT DRILLING: A NEW MONITORING WELL BASED APPROACH

Jennifer Martin Tilton, Shannon M. Ulrich, Shandra D. Justicia-León, Craig Divine, David Liles, Kate Clark, and Dora Taggart

April 17, 2019

# **Today's Presentation**

**Describe** results of lab and field testing of a new monitoring well based sampling tool to cost effectively provide site specific data to evaluate the formation of reactive iron minerals

*Implications* for abiotic degradation processes, longevity of passive treatment potential stored in reactive minerals, and

*Ultimately,* remedial strategy development and interactions with regulatory agencies and stakeholders



### ARCADIS Design & Consultancy for natural and built assets







4

# **Enhanced Mineral Precipitation**

Metal sulfides (and others) for in situ metals sequestration



Reactive reduced iron minerals abiotically degrade chlorinated solvents





# Anaerobic Biodegradation

Fermentable organic carbon provides the electrons that drive the sequential reductive dechlorination process

## Abiotic Degradation

- ➔ Fermentable organic carbon provides electrons which drive microbial Fe and SO<sub>4</sub><sup>2-</sup> reduction
- → Fe<sup>2+</sup> and HS<sup>-</sup> are generated and FeS (mackinawite) and FeS<sub>2</sub> (pyrite) can then form
- → Abiotic degradation products not easily measured



# How do we know what's really happening in situ?



<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC-ND</u>

Groundwater samples

- Must extrapolate data to solid-phase processes
- Loss of reactive species such as HS<sup>-</sup> or Fe<sup>2+</sup>
- Snapshots in time

### Geochemical modeling

- · All models have simplifying assumptions
- Predicts equilibrium conditions (kinetics not considered)

Mineral samples from drill cores

- Costly, often a one-shot opportunity
- Obtaining representative samples can be difficult
- Samples may have significant background "noise"

There is a clear need to improve our ability to assess mineralogical changes at remediation sites.





Soil sample with heterogenous mineral distribution

Soil core with heterogenous mineral distribution







Existing tools infer the potential for abiotic degradation processes based on groundwater data



# **Min-Traps**

Conclusively document the formation of specific minerals Therefore verify important geochemical and remedial processes that usually are only inferred.

- Collects minerals actually forming at site using existing monitoring well network
- → Representative of conditions in higher-flux zones
- → Inexpensive, easily repeated
- → No significant background "noise" in samples

| Process                                                                     | Contaminants                                                                                                      | Target Observation<br>within the Min-Trap™                                                                          |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Enhanced Reductive<br>Dechlorination & Combined<br>Biotic/Abiotic Treatment | Chlorinated solvents                                                                                              | Reactive iron mineral formation,<br>such as magnetite, mackinawite,<br>and/or pyrite                                |
| In-situ Chemical Oxidation                                                  | Metals that co-precipitate or adsorb<br>to iron oxides (e.g., arsenic),<br>metals that form low-solubility oxides | Iron oxides or other metal oxides<br>containing co-precipitated and/or<br>adsorbed metalloids/metals                |
| In-situ Chemical Reduction                                                  | Cr(VI), U, metals that form sulfides                                                                              | Increase in the total to dissolved ratio of a metal over time, or $\text{FeS}_{x}$ or other metal sulfide formation |
| pH neutralization<br>(increase or decrease)                                 | Metals                                                                                                            | Increase in solid-phase metals<br>in the Min-Trap™                                                                  |



ARCADIS Design & Consultancy for natural and built assets



# Min-Trap Design

- → A 15-inch long PVC slot-screen housing containing multiple porous media pillows
- → Customizable porous medium inside mesh pillows acts as a matrix for precipitating minerals
- ➔ Analytical packages are tailored based on technical objectives
- → Manufactured and sold by Microbial Insights





Slotted PVC Porous medium in casing permeable mesh











# **Bench Testing**

### ARCADIS Design & Consultancy for natural and built assets

Co-precipitation of arsenic or chromium with iron



Precipitation of uranium with phosphate

|                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                   |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Minerals with un                                                                                                              | raniur<br>Forn                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Uraninite<br>Coffinite<br>Brannerite<br>Orthobrannerite<br>Ianthinite<br>Ishikawaite<br>Lermontovite<br>Moluranite<br>Mourite | $\begin{array}{c} (U_{1-}^{4+} \\ USi( \\ (U, \\ (U^{6-} \\ U^{4+} \\ (U, \\ U(P \\ H_{4} \\ UM \\ UM \\ \end{array})$ | $\frac{\text{META-AUTUNITE}}{\text{Ca}(U0_2)_2(P0_4)_2.2-6H_20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| Petschekite<br>Sedovite<br>Uranomicrolite<br>Tyuyamunite                                                                      | (U, C<br>UFe<br>U(M<br>(U, C<br>Ca(1                                                                                   | Mount Spokane, Washington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Carnotite<br>Torbernite<br>Autunite<br>Vyacheslavite<br>From Závodská et al. 2                                                | K <sub>2</sub> (1<br>Cu[(1<br>Ca[(1<br>U(PC<br>2008, Env                                                               | Imaged by Heritage Auctions, HA.com<br>$JO_2)(PO_4)]_2(H_2O)_8$<br>$JO_2)(PO_4)]_2(H_2O)_{10-12}$<br>$D_4)(OH)(H_2O)_{2,5}$<br>ironmental chemistry of uranium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEM HV: 20.0 kV     |
|                                                                                                                               |                                                                                                                        | storing of a different store s | View field: 71.7 µm |

Biological iron and sulfate reduction to form iron sulfides Simulated enhanced reductive dechlorination (ERD)





# **Potentially Applicable Analyses**



|   | Chemical             | <ul> <li>Weak and strong acid soluble iron (WAS, SAS)</li> <li>Acid-volatile sulfide (AVS)</li> <li>Chromium-extractable sulfide (CrES)</li> </ul> | Biogenic (pseudocrystalline) vs.<br>crystalline minerals<br>Sulfur forms: FeS vs. FeS <sub>2</sub> and S <sup>0</sup> |
|---|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Ś | Microscopy           | <ul> <li>Light/petrographic</li> <li>Scanning Electron Microscopy (SEM)</li> <li>Transmission Electron Microscopy (TEM)</li> </ul>                 | Mineral grain size, shape, distribution                                                                               |
|   | Spectroscopy         | <ul> <li>Energy Dispersive X-ray Spectroscopy (EDS)</li> <li>X-ray Absorption Spectroscopy (XAS)</li> </ul>                                        | Elemental composition<br>Elemental coordination                                                                       |
| Ċ | General              | <ul> <li>X-Ray Diffraction (XRD)</li> <li>Magnetic susceptibility (magnetite)</li> </ul>                                                           | Mineralogy<br>Magnetic mineral content                                                                                |
| ğ | Molecular<br>biology | QuantArray                                                                                                                                         | Microbial community                                                                                                   |

# 

5

WAS and SAS iron: >95% ferrous iron AVS: ~80% FeS CrES ~20% FeS<sub>2</sub> or S<sup>0</sup>















Chloromethanes up to ~20 mg/L Co-disposed S-containing compounds Naturally high iron EHC<sup>™</sup> treatment June-August 2018 Min-Traps deployed Aug 2018 Retrieval and analysis October 2018





### FeS, FeS<sub>2</sub> precipitation in Min-Traps would confirm:

- $\checkmark\,$  Formation of reactive minerals in the aquifer
- ✓ Presence of multiple CVOC degradation pathways
- ✓ Migration and re-precipitation of dissolved constituents (Fe<sup>2+</sup>) from EHC<sup>™</sup> injection site (*increased ROI*)
- ✓ Expanded degradation capacity beyond EHC<sup>™</sup>'s direct reduction by ZVI/biological ERD by expanding the reactive treatment zone and increasing reactive surface area



# Min-Trap data can help optimize remedial strategies to maximize formation of reactive mineral species.

© Arcadis 2018

MW-2: located at downgradient edge of EHC<sup>TM</sup> injection area



| WAS Iron               | SAS Iron                | AVSulfide | CrESulfide |  |
|------------------------|-------------------------|-----------|------------|--|
| (mg/kg)                | (mg/kg)                 | (mg/kg)   | (mg/kg)    |  |
| Fe2+ = 330<br>Fe3+ = 0 | Fe2+ = 300<br>Fe3+ = 30 | 240       | 120        |  |



<u>Iron:</u> Solid iron is reduced <u>Sulfur:</u> Mostly FeS, some FeS<sub>2</sub>

MW-1: Original source area, within injection area



| WAS Iron              | SAS Iron               | AVSulfide | CrESulfide |
|-----------------------|------------------------|-----------|------------|
| (mg/kg)               | (mg/kg)                | (mg/kg)   | (mg/kg)    |
| Fe2+ = 48<br>Fe3+ = 0 | Fe2+ = 55<br>Fe3+ = 37 | 0.80      | 94         |





<u>Iron:</u> Lower solid iron, some is reduced <u>Sulfur:</u> Very little FeS; CrES is likely co-disposed S<sup>0</sup>

20

# **Min-Trap Analysis**

### MW-2 Results – SEM with Energy Dispersive X-Ray Spectroscopy (EDS)



ARCADIS Design & Consultancy for natural and built assets

# **Min-Trap Analysis: Microbial**

| Sample Name                                   | MW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Microbial Induced Corrosion                   | cells/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Bacteria (EBAC)                         | 7.74E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Archaea (ARC)                           | 3.58E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sulfate Reducing Bacteria (APS)               | 1.92E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sulfate Reducing Archaea (SRA)                | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methanogens (MGN)                             | 1.69E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Acetogens (AGN)                               | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fermenters (FER)                              | 3.11E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Iron Reducing Bacteria - Other (IRB)          | 1.21E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IRB Geobacter (IRG)                           | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IRB Shewanella (IRS)                          | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Iron Reducing Archaea (IRA)                   | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Iron Oxidizers (FeOB)                         | 8.13E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Manganese Oxidizing Bacteria (MnOB)           | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sulfur Oxidizing Bacteria (SOB)               | 1.98E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Denitrifying Bacteria (nirK)                  | 1.02E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Denitrifying Bacteria (nirS)                  | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ammonia Oxidizing Bacteria (AMO)              | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nitrite Oxidizing Bacteria (NOR)              | 8.37E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitrogen Fixers (NIF)                         | 5.57E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Burkholderia cepacian Exopolysaccharide (BCE) | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Deinococcus spp. (DCS)                        | 5.35E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Meiothermus spp. (MTS)                        | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cladosporium spp. CLAD                        | <1.00E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                               | Sample Name<br>Sample Date<br>Microbial Induced Corrosion<br>Total Bacteria (EBAC)<br>Total Archaea (ARC)<br>Sulfate Reducing Bacteria (APS)<br>Sulfate Reducing Bacteria (APS)<br>Sulfate Reducing Archaea (SRA)<br>Methanogens (MGN)<br>Acetogens (AGN)<br>Fermenters (FER)<br>Iron Reducing Bacteria - Other (IRB)<br>IRB Geobacter (IRG)<br>IRB Shewanella (IRS)<br>Iron Reducing Archaea (IRA)<br>Iron Oxidizers (FeOB)<br>Manganese Oxidizing Bacteria (MnOB)<br>Sulfur Oxidizing Bacteria (SOB)<br>Denitrifying Bacteria (nirK)<br>Denitrifying Bacteria (nirS)<br>Ammonia Oxidizing Bacteria (AMO)<br>Nitrite Oxidizing Bacteria (NOR)<br>Nitrogen Fixers (NIF)<br>Burkholderia cepacian Exopolysaccharide (BCE)<br>Deinococcus spp. (DCS)<br>Meiothermus spp. (MTS)<br>Cladosporium spp. CLAD |



ARCADIS Design & Consultancy for natural and built assets

- → Microbial analyses can be performed with Min-Trap samples
- Data provide insight on geochemical (redox) conditions and abundance of key microbial groups for the formation of reactive mineral species
- Data from Min-Trap samples are comparable to data from corresponding groundwater samples





### **Development Path**

#### ARCADIS Design & Consultancy for natural and built assets





### 2018 Initial Field Testing

- Iron sulfide mineral formation confirmed
- Nickel sulfide precipitation testing ongoing

STCP

Patent pending

### 2019- Technology validation and demonstration

• ESTCP funding to validate Min-Trap<sup>™</sup> performance and develop standard practices

**microbial**insights

 Develop techniques to quantify characteristics of minerals formed in Min-Traps

### **Expand Applications**

- Increased use on new project sites and new applications
- Additional capabilities (mineral reactivity, microbial analyses, flux measurement, isotope analyses, etc.)

### 2016-2018 Lab Testing

- Arsenic and chromium precipitation
- Iron sulfide mineral formation



# **ESTCP ER195190**



# Field validate a monitoring well-based approach to characterize in situ geochemical processes, evaluate abiotic CVOC destruction mechanisms, optimize in situ remedies, and document the potential longevity of passive remedies.

| <u>Pe</u><br>o<br>pre           | <u>rformance</u> : design and<br>ease of use in field<br>deployment/retrieval,<br>servation, and analysis | <u>e</u> : design and <u>Effectivene</u><br>use in field data repre<br>nt/retrieval, aquifer co<br>, and analysis geochemic |                              | rmance: design and<br>se of use in fieldEffectiveness: produce<br>data representative of<br>aquifer conditions and<br>geochemical processes |  | ce <u>Influence:</u> impact on<br>of remedial decision<br>nd making and interactions<br>ses with stakeholders |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------|
| Primary Quantitative Objectives |                                                                                                           | Pr                                                                                                                          | imary Qualitative Objectives |                                                                                                                                             |  |                                                                                                               |
|                                 | Min-Traps produce expected mineralogical results                                                          |                                                                                                                             | Ø                            | Define appropriate conditions for application                                                                                               |  |                                                                                                               |
| Ū                               | Confirm the deployment time                                                                               |                                                                                                                             |                              | Identify potential challenges and limitations of design                                                                                     |  |                                                                                                               |
| ¥111<br>¥¥¥                     | Compare Min-Trap and core                                                                                 | sample data                                                                                                                 | X<br>V<br>X<br>V<br>X        | Use results to inform remedial decision making                                                                                              |  |                                                                                                               |
| <u>dı.</u>                      | Evaluate consistency and variability in results                                                           |                                                                                                                             |                              | Develop technical guidance for use                                                                                                          |  |                                                                                                               |

© Arcadis 2018

ARCADIS Design & Consultancy for natural and built assets



# **Questions?**



#### JENNIFER MARTIN TILTON

Principal Hydrogeologist Raleigh, NC

o 919.415.2275 e Jennifer.Tilton@arcadis.com







Shandra Justicia-Leon, PhD Arcadis



Shannon Ulrich

Arcadis



Kate Clark, PhD Microbial Insights **Pesign & Consultancy** for natural and built assets

### **Technical Knowledge**



### Innovation



TISR<sup>SM</sup> (Thermal In-Situ Sustainable Remediation)

Oleophilic Bio Barriers (OBBs) (for Hydrocarbon Sheens)



HRX Well<sup>TM</sup> (Horizontal Treatment Well)

**Zipliner** (Safer DPT Liners)

02 May 2019

27