Field Test Analysis of Trichloroethene Abiotic & Bio-Degradation Rates, Sorption and Diffusion Coefficients for Low Permeability Fractured Rock

Richelle M. Allen-King, Rebecca Kiekhaefer, Rory Dishman *University at Buffalo, SUNY*

With collaborators: Dan Goode, Paul Hsieh, Tom Imbrigiotta, Michelle Lorah, Allen Shapiro, Alex Fiore, Pierre Lacombe, Karl Haase, Claire Tiedeman *USGS*

Matrix contamination => long term secondary

source

- DNAPL (dense nonaqueous phase liquid) dissolves & diffuses into matrix
- "Back diffusion" from matrix to fractures can sustain contaminant concentrations & limit remediation effectiveness

Project Objective:

Develop and test a field method capable of concurrently quantifying site-specific trichloroethene (TCE) "transport coefficients" in the matrix (slow)

- diffusion coefficient (tortuosity factor)
- sorption coefficients
- degradation coefficients (abiotic in matrix, biotic in borehole)

What characteristics of 'back diffusion" cause it to effectively sustain contaminant concentrations?

Field Test Overview: Borehole provides matrix interface with long term contaminant exposure

Permeable fractures feed TCE into wellbore water (post-drilling)

TCE diffuses from borehole into low-permeability matrix where sorption & abiotic reaction occur.

Monitoring data supplies pre-test concentration history

Post-drilling conditions

~Borehole drilled ~10 years prior to test

Sparging (N₂) to remove VOCs

Dosing bromide & trichlorofluoroethene (TCFE) tracer sol'n

Field Test Overview: Test Conditions

Simulations to Estimate Parameters

Processes simulated:

•Matrix diffusion

• Retardation from sorption (local equilibrium)

• Biodegradation only in borehole

Abiotic degradation only in matrix

Simulation includes historical exposure

Effective diffusion coefficients from bromide tracer

Observations

oTCE concentration << pre-test concentration (10-20 mg/L)</pre>

ocis-DCE concentration > pretest () after ~30 days => rapid biodegradation in the borehole

Degradation products not shown had very low or nondetectable concentrations, including acetylene, ethene, ethane or chlorofluoroethenes.

Fast TCE biodegradation consistent with independent batch experiment results

Calibrated parameters

	K _d	λ₀**	t _{1/2}
	(L/kg)	(µM/day)	(day)
TCE	<u>4.6</u>	1 1	
TCFE	8.9*	$\underline{\perp}.\underline{\perp}$	
<i>cis</i> -DCE	0.91*		3100

*Kd ratios TCFE:TCE & *cis*DCE:TCE fixed based on lab data or solubility

**Zeroth order (TCE+TCFE) biodegradation

Biodegradation kinetic form & rate constants

- TCE & TCFE either 0th or 1st order
- TCE & TCFE rate constants consistent lab (factor of 4)
- Fast TCE to cisDCE
 Slow cisDCE to VC

Sorption coefficients (K_d)

- Consistent with lab results
- o High

Abiotic degradation???

Approach to abiotic degradation

- Incorporate abiotic degradation in the matrix into model and refit experiments
- •Use rate coefficient previously measured for rocks from this field site by Schaefer et al. (2013)*

k′=5x10⁻⁹ s⁻¹

- •Schaefer et al. assumed that sorbed phase degraded
- •Vary which phase -dissolved or sorbed degrades

Rock mounted for diffusion experiment from Schaefer et al. (2013)

*Schaefer, et al., *Coupled Diffusion and Abiotic Reaction of Trichlorethene in Minimally Disturbed Rock Matrices.* ES&T, 2013. **47**(9): p. 4291-4298.

Diffusive transport equation with degradation of dissolved and sorbed contaminant

$$R\frac{\partial C}{\partial t} = D\frac{\partial^2 C}{\partial^2 x} - \left(\lambda C + \frac{\rho k K_d}{\theta}C\right)$$

Degradation of <u>dissolved</u> & <u>sorbed</u> TCE

R – retardation factor

D-diffusion coefficient

C-dissolved concentration

ρ-bulk density

θ-porosity

λ-degradation rate coefficient for dissolved

k—degradation rate coefficient for sorbed

Assume linear, instantaneous, equilibrium sorption

Adjusting rate constant for dissolved or sorbed degradation

$$k' = k \rho K_d$$
 =5x10-9 s⁻¹

•Representative value from Schaefer et al.

 $k = k' / \rho K_d$ =2x10⁻⁸ s⁻¹

 $\lambda = k'/\theta = 6.6 \times 10^{-8} \text{s}^{-1}$

•ρ=2.6 kg/L, assume 0.1 L/kg from data 0.081-0.17 L/kg

•Fit Schaefer et al. results assuming only dissolved phase degrades, θ=0.076

Results of simulations with abiotic degradation

- •Quality of TCE and cisDCE fits unaffected
- •Degradation of dissolved phase only
 - parameters same as base case (=case with no abiotic degradation)

•Degradation of sorbed phase

- sorption coefficient approximately doubled from base case, small change in biodegradation rate

ADP are ethene, ethane, acetylene

No ADPs were observed during experiment...

EXPECTED	OBSERVED	
Sorbed TCE abiotic degradation:		
225-260 μg/L of each of 3 ADP	XX	
Dissolved TCE (in matrix):	ND- acetylene, ethane	
5-7 μ g/L of each of the 3 ADP	Trace ethene at end of	

Provisional Conclusion: Abiotic degradation below detection limit?

experiment

Site specific findings using the testing apparatus & method at NAWC

Biodegradation (TCE to cisDCE) fast in borehole under experiment (no flow) conditions

- Maintains low TCE concentration compared to matrix
- Consistency between model and results suggests biodegradation occurs at the interface, not in the matrix
- cisDCE to VC degradation rate increased in later part of test increased residence time

Sorption retains CVOC mass near interface between high & low permeability

- Borehole wall in experiment; fracture interface in field conditions
- "High Kd" in these sedimentary rocks is consistent with overmature organic matter

No evidence of abiotic degradation in this or other tests

• If dissolved phase degrades, impact on overall mass negligible

TCE biodegradation *fast* & cis DCE degradation rate increasing

Acknowledgements

FINANCIAL SUPPORT

SERDP Project no. ER-2533

& the following USGS programs:

Toxic Substances Hydrology Program New Jersey Water Science Center Hydrologic Research & Development Program Office of Ground Water National Assoc. Geoscience Teachers/USGS Intern Program

SITE ACCESS & HISTORIC DATA

US Navy NJ DEP Watermark

