

Estimation of Sorbed-Phase Biodegradation Rate in Activated Carbon Barriers Microbial Diagnostics – CSIA – *in situ* Microcosms

Jeremy Birnstingl, PhD - Regenesis Samuel Rosolina, PhD - Microbial Insights Matthew Burns, MS - WSP

- Jeremy Birnstingl, PhD
- Samuel Rosolina, PhD

– Microbial Insights

• Matthew Burns, MS

– WSP

– Regenesis

Contents

- Injectable Activated Carbon Barriers
 plume management without pumping
- Coupling Sorption with Biodegradation
 bioregeneration of capture capacity

Field Validation and Rate Measurement
 - calibration for engineering control

The Challenge

In situ remediation performance is typically tracked using groundwater samples

So what to do when concentrations are nondetect within a colloidal carbon barrier?

How can we *quantify* net destruction rate to improve engineering control?

This talk

Estimation of post-sorption degradation rates using *in situ* microcosms (ISMs)

Injectable activated carbon – fundamentals

Booth # 134/6

Fundamentals

Plume Management – Barrier Keeping it simple... Configuration

Bioregeneration of sorption sites extends barrier longevity

Fundamentals

- The carbon quantity is tiny
 - Groundwater flow is not affected
- The capture efficiency is high
 - Contaminant advection is slowed significantly
- The groundwater may flow through the barrier in days
 - The contaminants may take years to pass through
- Biodegradation in the barrier extends its performance
 - If the rate is fast enough the extension is indefinite

Key parameters

Barrier performance is the interplay of two modelling parameters:

- Contaminant Retardation Factors
- **Contaminant Degradation Rates** •

Retardation splices more treatment time into a shorter distance

Degradation rate determines if

breakthrougn will ever occur

Retardation-Factors

Managing plumes via the retardation factor R

• The Retardation Factor (*R*) determines how fast a contaminant moves relative to the groundwater.

travel distance per unit time

R = 1 (groundwater velocity)

R = 2

R = 10

Managing plumes via the retardation factor R

• The Retardation Factor (*R*) determines how fast a contaminant moves relative to the groundwater.

travel distance per unit time

R = 1 (groundwater velocity)

VOC in soil: R = 1

VOC in soil: R = 3

 \leftarrow in soil with $f_{\text{plumestop}}$ of 0.001, 100 µg/L TCE has an $R \approx 600$

Managing plumes via the retardation factor R

- The TCE may therefore have one month to degrade in a bio-only barrier
- But it will have 16 years to degrade over the same distance if PlumeStop[®] is added
- This translates to better performance and greater security

Field Validation and Rate Measurement

• *R* as installed can be validated through soil cores or tracer tests

Challenge:

- But how to determine bio rates if the dissolved phase is nondetect?
- Solution *in situ* microcosms (ISMs)
- Key data resolution sufficient for purpose

60

In Situ Microcosms

collect and dry saturated soils

place soil into screened housings

deploy before amendment application

wsp

ISM Usage Example

Quebec, Canada Rail Yard, VOCs mplementation

November 2017

250 L 250 L 18 L

- Wast + Amendment: 28,000

- Aproximately 10% of mobile porosity within treatment

- Pressure: 20 to 40 psi

- Some back pressure - Amendment observed and

some geochemical shifts in wells within treatment area

Dilution/Chase Water - Potable Water: 25,000L

Matt Burns

Amendments

- HRC:

- Plumestop: 1,900 L

– AquaZVI: – HRC Pimer:

- Augment:

Total Fluids:

zone

Observations

MAANAAAA

ISM Usage Example – Quebec Rail Yard

Chlorinated ethenes / ethanes

- ∑ Tri 4,500 μg/L
- \sum Di 13,000 $\mu g/L$

Soil type

- Heterogeneous silt and sand

Treatment

- 26' – 46' bgl (8 – 14 m)

Seepage velocity

- 30 ft/year (9 m/year)

Barrier

- 16' x 100' x 20' d
- 5 m x 30 m x 6 m d

(Post LAC[™] Application)

Deg. Rates k (as $t_{\frac{1}{2}}$) 100 days (TCE, DCE) 30 days (VC, ethene)

Retardation Factors (R)

- dynamically variable
 - convex isotherms
 - competitive sorption
 - range 10's to 1000's

 $f_{oc} = 0.001$ $f_{PlumeStop} = 0.0003$

LAC[™] Emplaceable Range: ~0.0001 - 0.02 (..0.0003 ≈ 1.5%)

(*No* LAC[™] Application)

Deg. Rates k (as $t_{\frac{1}{2}}$) 100 days (TCE, DCE) 30 days (VC, ethene) - (all unchanged)

Retardation Factors (R)

- TCE = 1.81
- DCE = 1.53
- VC = 1.02

 $f_{oc} = 0.001$ $f_{PlumeStop} = zero$

Bio rates would have to be <10 days (TCE, DCE) < 3 days (VC) for compliance w/o retardation (in the Quebec winter)

(i.e. Post LAC[™] Application)

Deg. Rates k (as $t_{\frac{1}{2}}$) 100 days (PCE, TCE, DCE) 30 days (VC, ethene)

Retardation Factors (R)

- dynamically variable
 - convex isotherms
 - competitive sorption
 - range 10's to 1000's

 $f_{oc} = 0.001$ $f_{PlumeStop} = 0.0003$

LAC[™] Emplaceable Range: ~0.0001 - 0.02 (∴0.0003 ≈ 1.5%)

Contaminant Destruction (11 months)

Treatment Zone

Estimation of Destruction Rate

- Trendlines cannot be established from only two data points
 - But minimum rates can
 - This is sufficient to validate design assumptions
 - There is design compliance if the rate is greater than the design minimum

Estimation of Destruction Rate

- Simple exponential (first-order) fits
- These may be also expressed as half-lives

Estimation of Destruction Rateokending the minima)

Estimation of Destruction Rate

- Daughter loss rates can be refined using model-fits
 - Simple models are sufficient
 - The minimum is independently assignable rates and a parent-daughter molar cascade
- Model-unwrapped minimum half-lives from ISM data:
 - TCE = 38 days
 - DCE = 141 days
 - VC = 3 days

These can now be used in our design model for calibration

(i.e. Post LAC[™] Application)

Design Deg. Rates k (as $t_{\frac{1}{2}}$) 100 days (TCE, DCE) 30 days (VC, ethene)

Calibrated Deg. Rates k (as $t_{\frac{1}{2}}$) 38 days (TCE) 141 days (DCE) 3 days (VC) (3 days ethene)

 $f_{oc} = 0.001$ $f_{PlumeStop} = 0.0003$

LAC[™] Emplaceable Range: ~0.0001 - 0.02 (∴0.0003 ≈ 1.5%

- Summary & Conclusions -

Summary and Conclusions

- Injectable carbon combined retardation and biodegradation
 - More destruction in a shorter distance
 - Contained treatment without O&M costs

Summary and Conclusions

- ISMs a management tool for engineers
 - Validation of design assumptions
 - Longevity compliance prediction / early intervention alert
 - Ensure performance remains within design boundaries

A developing art!

Taking this forward

- Method refinements for <u>established</u> barriers
 - Identifying and quantifying new bias
 - E.g. acclimated barriers vs. non-acclimated ISMs
- Expanded use of microbial diagnostic tools
 - Attached community QuantArrays (ISMs ≈ BioTraps®)
 - Stable Isotope Probing (SIP) (aerobically degradable contaminants only)
- Combine with in situ retardation quantification
 - Full model calibration capability
 - Comprehensive management tool-kit for engineers

Jeremy Birnsting

Ph.D. B.Sc. MSEE, CEnv Vice President <u>Enviro</u>nmental Technology

+44 7813 302 331

Bath, UK jbirnstingl@regenesis.com

Sam Rosolina

Ph.D. B.S. CSIA Lab Director

Thank You

+1 865-573-8188 Knoxville, TN

srosolina@microbe.com

Matt Burns

M.S. Technical Fellow Contaminated Land Practice Lead

> +1 617-960-4866 Boston, MA matt.burns@wsp.com