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Motivation for Machine Learning (ML)

* Geophysics can give indirect
information about contaminants

* Inversion and image thresholding
used to map ranges of values to
features of interest
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Motivation for Machine Learning (ML)
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SpC measurements
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Geophysical datasets

 Spatially distributed multifrequency
EM induction, GPR, and lakewater SpC
collected via kayak over the lake
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Geophysical inversion
approach

Depth and SpC of
lakewater accurately
known: hard constraint
on the inversion
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The problem with inversion
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Machine learning alternative

e Goal is to identify where SpC is daylighting: binary variable
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* Organic sediment
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Logistic regression classifier

° Develops 50% probability organic sediment
surface to classify data as either hickness class SRSt
plume (1) or no plume (0)
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Classification from logistic regression
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Organic sediment EC prediction

(@) Multivariate regression only (b) Logistic + multivariate regression
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organic sediment
thickness class

Summary
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provides direct estimate of
plume discharge
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