#### **Background**

Bioremediation, or the enhanced acceleration of microorganisms to facilitate the breakdown of environmental pollutants is an established and effective means for the cleanup in soil, sediment, groundwater and open water environments in cold-weather climates. Constraints imposed by low temperatures can lead to parameter limitations such as a lack, or surplus, of oxygen and/or other nutrients, and physical constraints such as freezing. Despite skepticism, bioremediation remains the most cost-efficient and sustainable solution for the destruction of environmental contaminants. The goal of implementing bioremediation programs under these conditions is the same as many cleanup projects – reduction of constituent concentration levels below a regulatory standard to obtain site closure. While biodegradation rates in coldclimates are slower than temperate regions, properly designed, executed, and monitored bioremediation projects are extremely effective in contaminant reduction and site restoration.

#### Challenges

A large portion of the world is considered a cold climate, due to seasonal snow cover or occurrence of permafrost. Cold-adapted microorganisms exist everywhere, capable of biodegradation in all media – soil, soil gas, sediments, and surface and groundwater. Identifying naturally occurring organisms and available microbes for bioremediation is critical early in site investigations. Application methods are diverse and unique to each project. This work outlines essential elements in identifying, investigating, sampling, testing, designing, monitoring and presenting biostimulation and bioaugmentation programs for all classes of compounds in glacial and bedrock terrains in northern-tier states and provinces, including bedrock and karst terrains in the central and midwestern states. Identifying and selecting the proper bioremediation strategy is essential for each individual cleanup project - each site is unique.



## Why Bioremediation ?

#### > ADVANTAGES

- Long-term protection of public health & environment
- Cheapest remedial alternative
- Minimal space requirements
- No liberating hazardous material
- > Natural processes
- > Sustainable
- Complete contaminant destruction

#### Biostimulation

- Have microbes
- Need food/nutrients

## Common bioremediation field application methods:

- Ex-Situ (soil excavation/handling)
- Injection/surface applications
- Extraction/re-injection of fluids
- Introduction of nutrients and substrates





# **Bioremediation Successes in Cold-Weather Climates**

## Katie Hoffmann (khoffmann@pineng.com) and Keith Rapp (krapp@pineng.com)

Pinnacle Engineering Inc., Minneapolis, MN, USA

PERCIEVED DISADVANTAGES

meeting targets

Perceived costs/failure

- **Climate issue (cold) Release of organisms to** environment
- Months to year(s) clean-up time-frames

Poor management/planning

## Bioaugmentation

- Need microbes
- Have food/nutrients
- Natural Attenuation • Have microbes
- Have food/nutrients





## **Biostimulation**

Involves modifying subsurface environment to stimulate existing bacteria /microbes capable of bioremediation – usually by addition of various forms of rate limiting nutrients and electron acceptors, such as phosphorus, nitrogen, oxygen, or carbon.



Groundwater DGGE profile of amplified DNA of 16s rRNA gene. Dechlorinating microbes require two (2) things to complete ERD reactions: 1) electron donors ("something to eat"); and, 2) electron acceptors ("something to breathe").







99% 95% 100% 99% 100% Monitoring Well MW-118 Groundwater Conce



Varve clays & outwash 106 points (4 - 14' bgs) 2,640 gallons EVO in 23,361 gallons H<sub>2</sub>O

> 95 gallons of nanostructured zero valent iron (nZVI) in 1,135 gallons H<sub>2</sub>O

• Hydraulic conductivity 3x10<sup>-5</sup> cm/sec (0.11 ft/day)

| MW-122     | MW-124s |
|------------|---------|
| 97%        | 69%     |
| 86%        | 100%    |
| 94%        | 100%    |
| 99%        | 100%    |
| 91%        | 98%     |
| 99%        | 61%     |
| 100%       | 85%     |
| 97%        | 100%    |
| entrations |         |
| Ì          |         |
|            | TCE     |

## **Bioaugmentation**

Addition of archaea, microbes, fungi, yeast, or bacterial cultures required to speed up the rate of degradation of contaminants. Bioaugmentation usually requires studying the indigenous varieties present in the location to determine if biostimulation is possible, and if not, the environment is enhanced by introduction of the appropriate biological communities.

#### Release of Bakken crude to soil, groundwater, and surface water



#### September 2015 - May 2017

|                          | Bioamendment<br>(Ibs) | Amendment<br>Water<br>(gallons) | Bioapplication<br>Concentration<br>(Ibs/gal) |
|--------------------------|-----------------------|---------------------------------|----------------------------------------------|
| <b>Bioapplication #1</b> | 1,775                 | 4,000                           | 0.4                                          |
| <b>Bioapplication #2</b> | 1,400                 | 1,650                           | 0.8                                          |
| <b>Bioapplication #3</b> | 1,600                 | 1,800                           | 0.9                                          |
|                          | 4,775                 | 7,450                           | 0.7                                          |









## Igmentation Groundwater - Average % BTEX/TPH Reduction



#### Projec Descripti

Weaver, MN February ugust 2014

harles City, lay-Augus

St. Cloud, M April - July 20

imdal, NC /lay 2015 –

eva, NY

yron, NY October 200 /lay 2012)

onfidentia une 2003 –2 bruary 201 sent)

> Katie Hoffmann **Pinnacle Engineering** 11541 95<sup>th</sup> Avenue North Minneapolis, MN 55369 khoffmann@pineng.com (763) 277-8416



## **Common Applications**

|    | Contaminant Type<br>and Location                                                                           | Method of<br>Application                                                                                    | Result                                                                                                                               |  |  |  |
|----|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | Fresh and<br>weathered Bakken<br>crude oil. Up to<br>12,000 gallons<br>released.                           | Archaea + nutrients<br>injected to<br>subsurface through<br>ballast. ~275 lbs.<br>mixed in 450 gal<br>water | 99-day pilot study reduced 90-<br>98% BTEX and TPH-GRO 76%<br>TPH-DRO and 65% MOR<br>compounds                                       |  |  |  |
|    | Spent locomotive<br>engine oil and<br>dyed diesel fuel.<br>Oil on floodwater<br>between 0.5 - 4"<br>thick. | Archaea applied to<br>oil pools manually<br>thru backpack<br>sprayers                                       | Eliminated all visible oil and<br>sheen in ~2 months (multiple<br>treatments)                                                        |  |  |  |
| 5) | Unknown volume<br>petroleum/solvent<br>s and dyed diesel<br>fuel.                                          | Archaea + nutrients<br>applied manually by<br>backpack sprayers,<br>tilling\raking, hand<br>spreading       | Closed site with non-detect soil samples in 6 months                                                                                 |  |  |  |
| pt | >60K gallons<br>Bakken crude oil<br>saturated track<br>ballast, wetlands,<br>soil, and<br>groundwater.     | 2,000 lbs Archaea +<br>nutrients and 4K<br>gallons water<br>injected<br>amendments to<br>subsurface         | 3 bioapplications on ballast<br>resulted in complete<br>biodegradation of oil in soil and<br>groundwater across application<br>area. |  |  |  |
|    | Source DNAPLs<br>creating SVI risk,<br>impacted surface<br>water, and 10-acre<br>plume                     | 106 Geoprobe<br>injection points for<br>the direct<br>introduction of<br>biostimulants to<br>subsurface     | 99.8% soil VOC reduction from<br>10,000 mg/Kg to ND<br>98% groundwater VOC reduction<br>to < 5 ppb<br>SVI risks eliminated           |  |  |  |
| )7 | Chlorinated VOC<br>plumes in soil,<br>groundwater and<br>surface water                                     | Subsurface<br>biodegradation<br>program from multi-<br>injection program<br>through 35 injection<br>points  | Complete reduction of VOCs in<br>soil, groundwater, and surface<br>water to ND conditions (ppb)                                      |  |  |  |
| 07 | >3-mile VOC<br>plume from<br>LNAPL\DNAPL<br>chlorinated<br>solvents at<br>multiple SWMUs                   | Multiple direct<br>injection programs<br>in wells 21- 160 feet<br>deep                                      | Source area VOCs in soil, karst<br>bedrock and groundwater<br>reduced to ND concentration<br>(ppb)                                   |  |  |  |
|    |                                                                                                            |                                                                                                             |                                                                                                                                      |  |  |  |

### **Contacts**

Keith Rapp Pinnacle Engineering 11541 95<sup>th</sup> Avenue North Minneapolis, MN 55369 krapp@pineng.com (612) 382-3763