

#### Bioremediation of Heavily Contaminated Marine Sediments by Petroleum Hydrocarbons Using Sediment Microbial Fuel Cells (SMFCs)

Hamdan Z. Hamdan; Darine A. Salam

Department of Civil and Environmental Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon

## Background

Serious aquatic hydrocarbons contamination

- Due to crude oil spills
- Large amounts of oil into the environment
- Natural weathering
  - Variety of organic contaminants can still be detected
  - High concentrations in anaerobic sediments
- Various limitations
  - Stability of the organic compounds
  - Slow anaerobic processes
  - Insufficient terminal electron acceptors
  - Important
    - Petroleum derived pollutants
    - Aliphatic and aromatic hydrocarbons
    - Adsorb onto sediments organic matter
    - Accumulate and persist

## Background

- Variety of physical, chemical and biological approaches
  - Handling an aquatic oil spill
  - Treatment of contaminated sediments
- Sediment Microbial Fuel Cells (SMFCs)
  - Importance for remediation the sediments
- Successful SMFCs implementation
  - Passive method for the treatment of lingering oil
  - Little external human intervention
  - Important to assess SMFCs performance
    - Oil hydrocarbons attenuation
    - Rather than limiting investigations to few target pollutants
    - Results more relevant to field applications
    - Possible interactions among various contaminants



# Background

Sediment microbial fuel cell (SMFC)

- Microbial electron transfer
- External terminal electron acceptor (TEA)
- Exoelectrogens
- Anode
  - Anaerobic sediments
  - ► TEA
  - Enhanced organic compounds degradation
  - Cathode
    - Oxygen rich water
    - Electrical current
  - Oxygen
    - Ultimate TEA
    - Thermodynamic favorability



## Experimental design

- Ferric iron amended marine SMFCs
  - enhancement of biodegradation potential of TPH
  - Stimulation of FeRB
    - Amorphous ferric hydroxide
    - Importance of exoelectrogens
    - Limited in marine ecosystems
  - Weathered light Arabian crude oil
    - Simulate a heavily contaminated marine environment

## Methodology: Sediment and Seawater

- Marine sediments
  - > Jiyeh, Lebanon, near the jiyeh powerplant
  - > 2006 oil spill
    - 15000 tons of heavy fuel oil
  - Daily contamination
    - Shipping
    - Loading/unloading
  - Grab sediment samples
    - 5-6 meters below the surface
    - 30 cm below the sediment/water interface
    - Preparation of sediment
      - Crude oil spiking
      - Iron amendment

## Methodology: SMFC design



## Methodology: SMFC operation

- Main treatment
  - Ferric iron stimulation
  - Anode reduction
- Two control conditions
  - Natural attenuation
    - Open circuit reactors
  - Ferric iron reducing condition
    - Open circuit
    - Monitor for the sole effect of ferric iron stimulation
  - Sediments spiking
    - Weathered light Arabian crude oil
      - 1 g/Kg of dry sediment
    - Simulate a heavily contaminated marine environment

## Methodology: Monitoring

- Sets of triplicates
  - 16 weeks of operation
  - 5 sampling events
    - ▶ Week 1, week, 2, week 4, week, 8 and week 16
  - Disassembly process
  - Total Petroleum Hydrocarbons (TPH: PAHs+alkanes)
    - Accelerated Solvent Extraction (ASE)
    - GC analysis
    - Microbial Analysis
      - Extraction
      - Sequencing (MRDNA)
    - Sulfates and iron
      - Standard methods
    - Voltage recording
      - Data acquisition system

#### **Results: Crude Oil Biodegradation**



#### **Results: TEAs**



#### **Results: Voltage**



#### Results: Microbial Community Analysis Principal component analysis (PCA)



### **Results: Microbial Community Analysis**



0.C.



#### Conclusions

- TPH removal
  - Fe C.C. SMFCs performance similar to the controls
  - Insignificant enhancement to bioremediation of heavy crude oil contamination
- Microbial community structure and evolution
  - Similarity in Fe amended SMFCs
    - Fe C.C. and Fe O.C.
    - Irrespective of the application of anode as a TEA
  - Main factor affecting the evolution
    - Presence of ferric iron
    - NOT anode
  - Similarity in bioremediation performance indicates
    - Bioremediation efficiency of heavy TPH contamination
      - Heavily driven by the total consortium of microbes within the sediments
    - 🖌 Evolution of the microbial population is related to the specific characteristics of the sediments
    - Either no significant bioremediation enhancement by applying SMFCs
    - Or sediments bioremediation capacity was overloaded by the heavy contamination
- Observations from this study
  - > Provide a baseline for better future assessments
  - > A reference for further studies to address iron amended marine SMFCs



# Thank you for listening

# Questions are welcome

For Contact

- Darine Salam: ds40@aub.edu.lb
- Hamdan Hamdan: hzh05@mail.aub.edu

