Applying compound-specific isotope analysis to sites with low concentrations of 1,4-dioxane

Katharine North Morrison, Peter Bennett & Min-Ying (Jacob) Chu (Haley & Aldrich) Ramon Aravena and Humam El Mugammar (University of Waterloo) Christy Smith and Michael Hyman (North Carolina State University) Michael Nickelsen (ECT2)

Motivation for this work

- Little is known about 1,4-dioxane (1,4-D) degradation at field sites
- SERDP-funded project in response to Statement of Need for cost-effective diagnostic methods for natural attenuation
- CSIA is uniquely powerful method for demonstrating biodegradation in the field, BUT:
 - 1. 1,4-D concentrations <100 μ g/L are too low for conventional CSIA methods
 - 2. Variety of enrichment factors for 1,4-D are not defined
 - 3. Range in isotopic composition of source 1,4-D is not well described
 - 4. Interpretation of CSIA at a variety of field sites lacking

Phase I

- Phase I focus:
 - 1. Development of method to perform CSIA on low concentrations of 1,4-D

δ¹³C ~ 1 μg/L δD ~ 10 μg/L

FEBRUARY 2017

2. Determination of enrichment factors (ε) of 1,4-D for different microbial cultures

FINAL REPORT

Extending The Applicability of Compound-Specific Isotope Analysis To Low Concentrations Of 1,4-Dioxane

SERDP Project ER-2535

Cite This: Environ. Sci. Technol. Lett. 2018, 5, 148–153

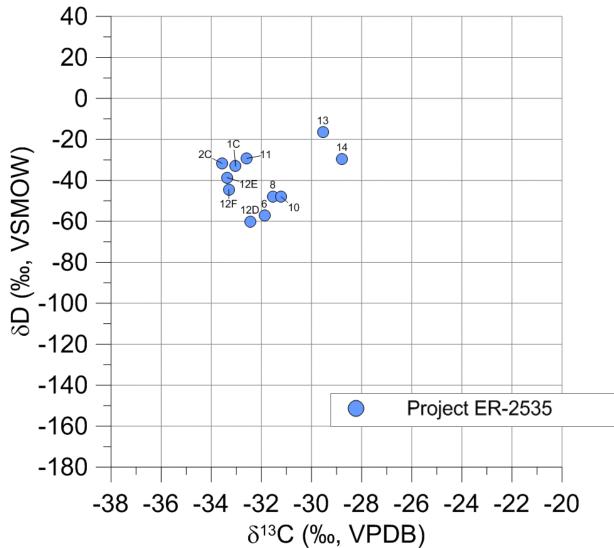
Letter

Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane

Peter Bennett,^{*,†}[®] Michael Hyman,[‡] Christy Smith,[‡] Humam El Mugammar,[§] Min-Ying Chu,^{||}[®] Michael Nickelsen,[⊥] and Ramon Aravena[#]

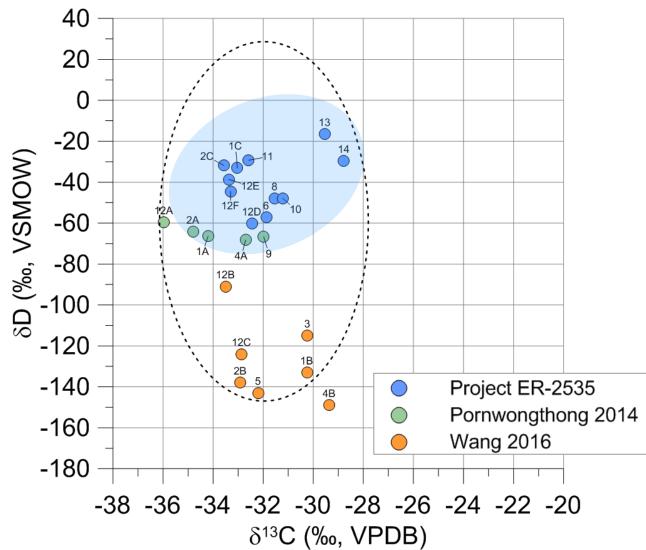
Phase II

- Phase II focuses on further development:
 - 1. Expand the database of source 1,4-D isotopic compositions
 - 2. Add at least six additional case studies at field sites



Isotopic composition of 1,4-dioxane sources

- Analyzed 11 different neat 1,4-D sources from various manufacturers, bringing total to 23
- Methodology
 - Used two different methods: EA-IRMS and GC-IRMS
 - Results identical when purity was >99.5%
 - GC-IRMS results shown along with results published by others


Source isotopic composition

No.	Manufacturer	δ ¹³ C ‰	δD ‰	Reference		
1A	1A		-66	Pornwongthong, 2014		
1B	Acros Organics	-30.3	-133	Wang, 2016		
1C		-33.0	-33	SERDP ER-2535, Phase II		
2A		-34.8	-64	Pornwongthong, 2014		
2B	Alfa Aesar	-32.9	-138	Wang, 2016		
2C		-33.6	-32	SERDP ER-2535, Phase II		
3	EMD 2013	-30.2	-115	Wang, 2016		
4A	Fishen Colombifie	-32.7	-68	Pornwongthong, 2014		
4B	Fisher Scientific	-29.4	-149	Wang, 2016		
5	Fluka 2014	-32.2	-143	Wang, 2016		
6	Honeywell	-31.9	-57	SERDP ER-2535, Phase II		
8	J.T.Baker	-31.5	-48	SERDP ER-2535, Phase II		
9	Mallinckrodt	-32.0	-67	Pornwongthong, 2014		
10	Molecular Dimensions	-31.2	-48	SERDP ER-2535, Phase II		
11	Restek	-32.6	-29	SERDP ER-2535, Phase II		
12A		-36.0	-60	Pornwongthong, 2014		
12B		-33.5	-91	Wang, 2016		
12C	Cience Aleluiele	-32.9	-124	Wang, 2016		
12D	Sigma-Aldrich	-32.5	-60	SERDP ER-2535, Phase II		
12E		-33.4	-39	SERDP ER-2535, Phase II		
12F		-33.3	-45	SERDP ER-2535, Phase I		
13	TCI America	-29.5	-17	SERDP ER-2535, Phase II		
14	Ultra Scientific	-28.8	-30	SERDP ER-2535, Phase II		

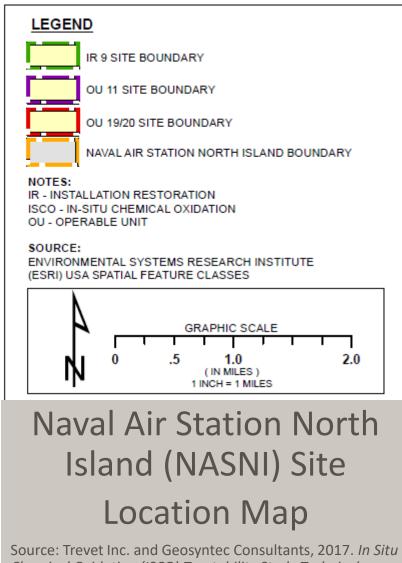
Source isotopic composition database

No.	Manufacturer	δ ¹³ C ‰	δD ‰	Reference	
1A	1A		-66	Pornwongthong, 2014	
1B	Acros Organics	-30.3	-133	Wang, 2016	
1C	1	-33.0	-33	SERDP ER-2535, Phase II	
2A		-34.8	-64	Pornwongthong, 2014	
2B	Alfa Aesar	-32.9	-138	Wang, 2016	
2C		-33.6	-32	SERDP ER-2535, Phase II	
3	EMD 2013	-30.2	-115	Wang, 2016	
4A	Fisher Coloratifie	-32.7	-68	Pornwongthong, 2014	
4B	Fisher Scientific	-29.4	-149	Wang, 2016	
5	Fluka 2014	-32.2	-143	Wang, 2016	
6	Honeywell	-31.9	-57	SERDP ER-2535, Phase II	
8	J.T.Baker	-31.5	-48	SERDP ER-2535, Phase II	
9	Mallinckrodt	-32.0	-67	Pornwongthong, 2014	
10	Molecular Dimensions	-31.2	-48	SERDP ER-2535, Phase II	
11	Restek	-32.6	-29	SERDP ER-2535, Phase II	
12A		-36.0	-60	Pornwongthong, 2014	
12B	В	-33.5	-91	Wang, 2016	
12C		-32.9	-124	Wang, 2016	
12D	Sigma-Aldrich	-32.5	-60	SERDP ER-2535, Phase II	
12E		-33.4	-39	SERDP ER-2535, Phase II	
12F		-33.3	-45	SERDP ER-2535, Phase I	
13	TCI America	-29.5	-17	SERDP ER-2535, Phase II	
14	Ultra Scientific	-28.8	-30	SERDP ER-2535, Phase II	

Pornwongthong, P., 2014. Stable isotopic and molecular biological tools to validate bio-degradation of 1,4-dioxane, Ph.D. thesis, UCLA. **Wang, Y., 2016.** Breakthrough in 2D-CSIA technology for 1,4-dioxane, Remediation, p.61-70.

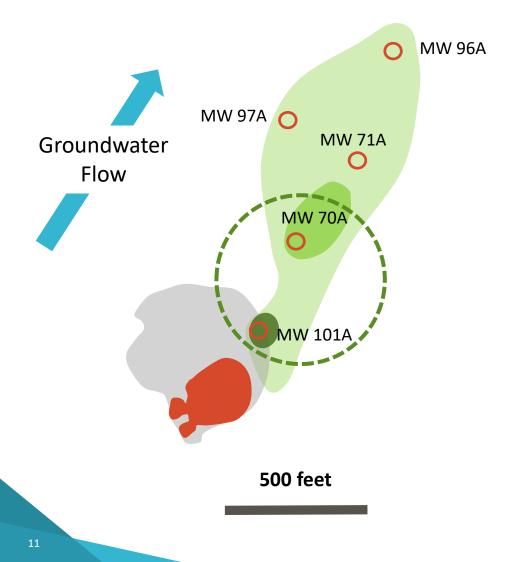
Case studies

Eight additional sites analyzed in Phase II, for total of 12



All case studies

Site	Location	Redox conditions	Biostim.?	1,4-D (μg/L)	
				Min.	Max.
McClellan AFB	Sacramento, CA	Aerobic	Yes	0.68	56
Space Launch Complex 16	Cape Canaveral, FL	Anaerobic	No	<3.0	17,200
Facility 1381	Cape Canaveral, FL	Anaerobic	No	all	<3.0
Vandenberg AFB Site 24	Lompoc, CA	Aerobic	Yes	78	81
AFP3	Tulsa, OK	Aerobic	Yes	90	250
JBCC, Ashumet Valley	Buzzards Bay, MA	Aerobic	No	all <	0.25
NASNI OU-19/20	San Diego, CA	Anaerobic	Yes	1.4	990
Non-DoD	Midwest	Anaerobic/Aerobic	Yes	8.3	310
Non-DoD	South Carolina	Aerobic	No	10	13
NASNI OU-11	San Diego, CA	Anaerobic	No	22	>8,000
MCB Camp Pendleton	Oceanside, CA	Aerobic	Yes	3.8	160
Hanscom AFB	Lincoln, MA	Aerobic	No	0.076	19

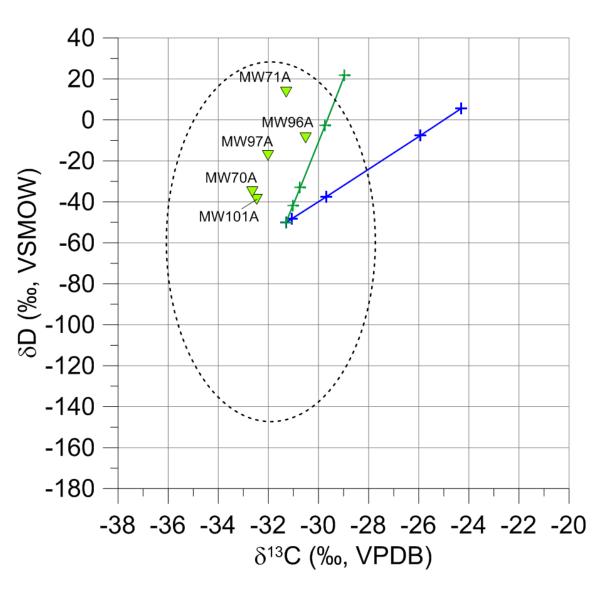


Chemical Oxidation (ISCO) Treatability Study Technical Memorandum, Installation Restoration Site 9 and Operable Unit 20, Naval Air Station North Island, Coronado, California. April.

NASNI OU-19/20

OU 19: LNAPL (JP-4, Stoddard solvent, TCE) OU 20: Chloroethene plume with Cr (VI)

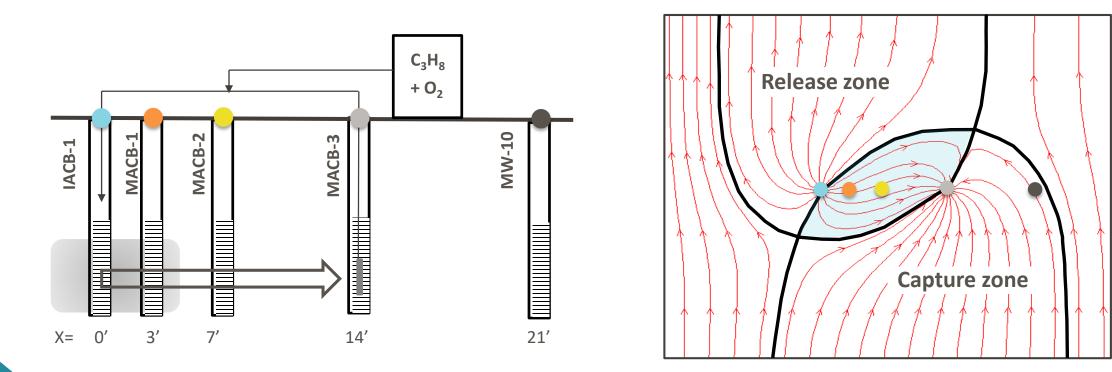
Anaerobic with possible shallow aerobic zones



NASNI OU-19/20

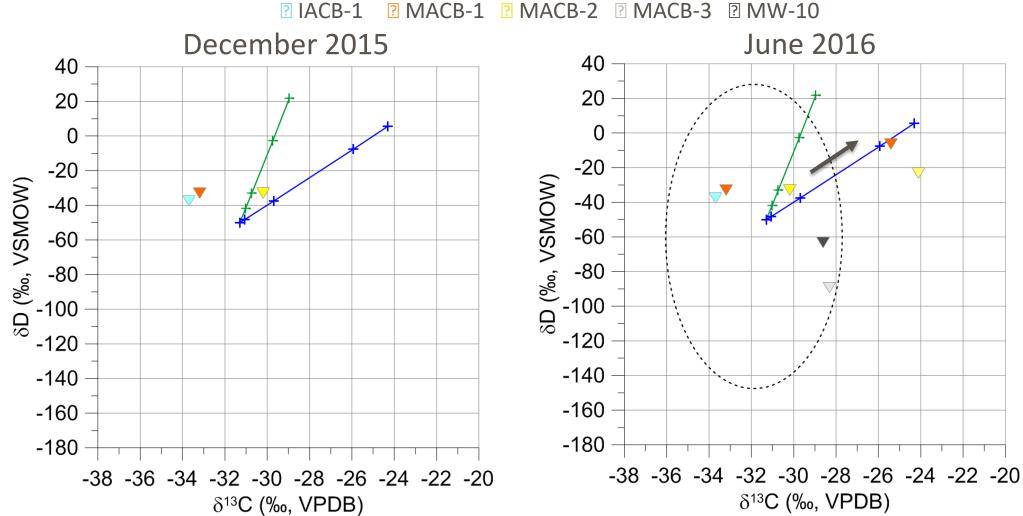
- Rayleigh degradation curves:
 - THF-grown culture
 - Propane-grown culture

Well	1,4-D (μg/L)
MW101A	970
MW70A	86
MW71A	1.4 J
MW97A	130
MW96A	14


Bennett et. al., 2018. Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane. Environmental Science & Technology Letters 5(3): 148-153

McClellan AFB aerobic cometabolic biodegradation pilot

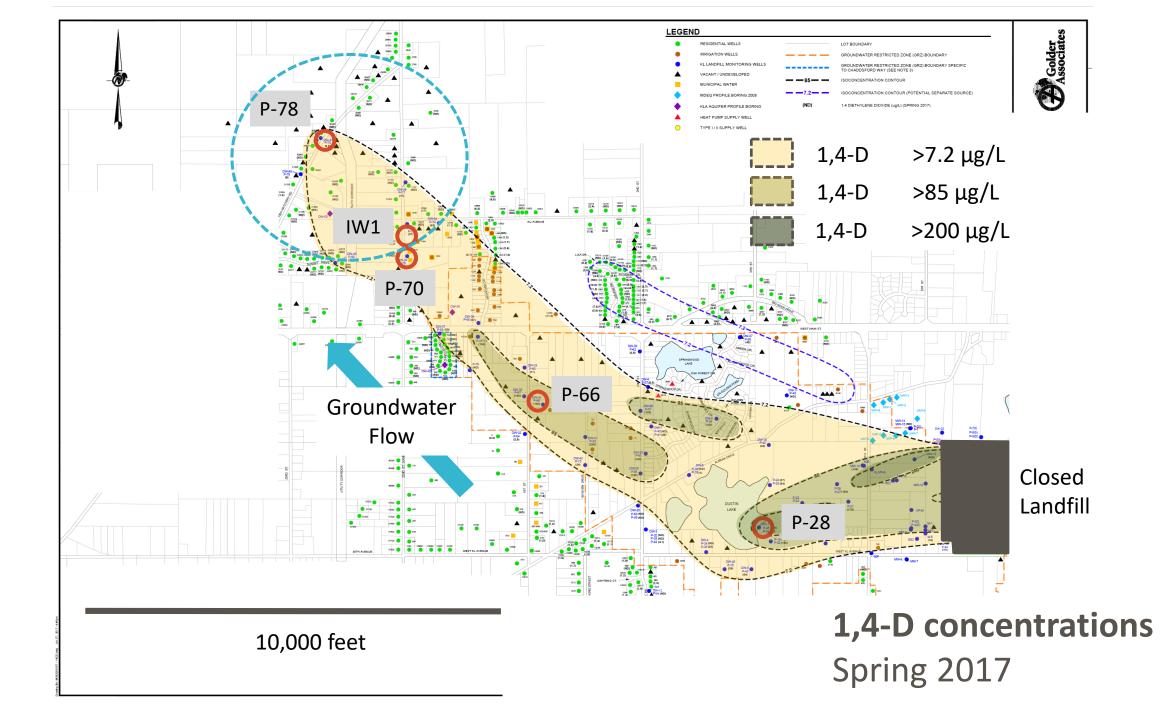
- Recirculation with propane and oxygen created an in-situ bioreactor
- Propane and oxygen injection began Oct 2015



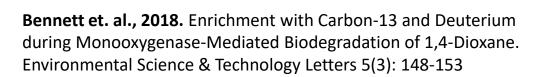
Enrichment in ¹³C in samples from treatment zone

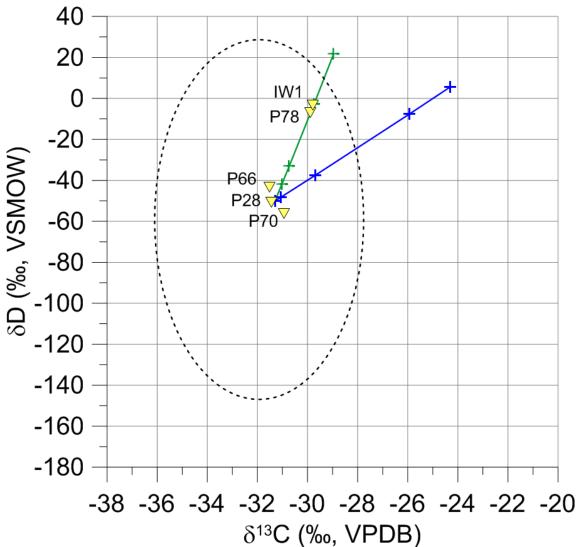
December 2015 June 2016 30 30 -24 -24 -26 -26 concentration (µg/L) 01 01 concentration (µg/L) 20 -28 -28 🖰 Ω >-30 0 -30 <u>C</u> 10 10 -32 -32 -34 -34 0 0 8 2 6 8 2 0 6 0 4 distance (feet) distance (feet) IACB-1 MACB-2 IACB-1 MACB-2 MACB-1 MACB-1

Dual isotope plots from treatment zone

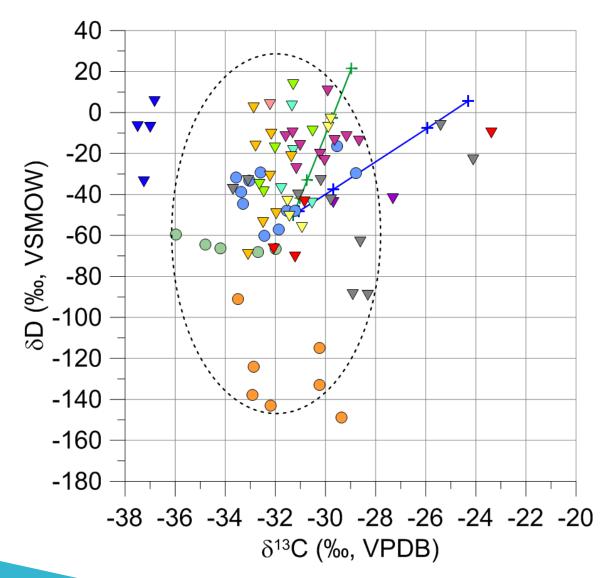


Non-DoD Midwest site


- Landfill accepted industrial waste 1968-1979
- THF is a co-contaminant
- Treatment with injected groundwater infused with oxygen and propane for ~four months prior to sampling



Midwest site


- Extensive fractionation at injection well IW1 and leading edge of plume P78
- Other locations consistent with 1,4-D source
- THF-grown culture

Isotopic composition of 1,4-dioxane: Source and groundwater samples

- ----- eC=-5.6; eH=-169

What we've learned:

- High variability in 1,4-D sources \rightarrow high variability in groundwater
- For field implementation:
 - Demonstrate enrichment in both $\delta^{13}C$ and δD
 - Many samples likely needed to demonstrate degradation
- Natural attenuation assessments should be supported by multiple lines of evidence
 - Analysis of monooxygenase biomarkers is valuable supporting information

What we need to learn:

- Other factors potentially affecting isotopic composition of 1,4-D require further study (e.g., evaporation, pH, etc.)
- 2D enrichment factors for other microbes, e.g., CB1190
- Characterization of natural degradation and isotopic enrichment under anaerobic conditions

Field site sampling collaborators

- ESTCP Project 201730: **Tony Danko** (NAVFAC), **Dave Adamson** (GSI Environmental, Inc.), and **John Wilson** (Scissortail Environmental Solutions LLC)
- Hanscom AFB: Kinshuk Shroff, Versar
- AFP3: Rebecca Mora, AECOM

Acknowledgements

- SERDP Grant ER-2535 (Bennett): CSIA method development
- SERDP Grant ER-2303 (Hyman): Degradation reactions performed at NCSU
- NSERC Discovery Grant (Aravena): CSIA of 1,4-D in samples from degradation reactions
- AFCEC FA8903-13-C0002 (Chu): Field Demonstration at Former McClellan AFB
- Dr. Andrea Leeson and Cara Patton at SERDP
- Dr. Hunter Anderson at AFCEC
- In-kind support from ECT2 (Nickelsen and Schmitz)

Thank you!

Katharine Morrison: kmorrison@haleyaldrich.com

Peter Bennett: pbennett@haleyaldrich.com

