Using the Combined UV Optical Image **Profiler and Hydraulic Profile Tool with** Modeling Tools to Visualize Complex **Petroleum LNAPL Migration** John Fontana CPG, CWD, President/CEO, Vista GeoScience

International Symposium on **Bioremediation and** Sustainable Environmental Technologies

April 15-18, 2019 Baltimore, Maryland #BattelleBioSymp19

OUTLINE:

- How the Optical Image Profiler Works
- Advantages of Reviewing Images
- Integrated HRSC Combined Tools (OIP+HPT+EC)
- Quality Control
- Case Studies: 2D & 3D Visualization of Complex LNAPL **Patterns**
- Summary

2

Optical Image Profiler: OIP-UV & OIP-G

- OIP-UV for Fuels, Lighter Oils: Ultra-Violet LED Light Source
 - Similar Response as LIF/UVOST
- OIP-G for Heavy PAHs: (tar, creosote, crude, etc.) Green Laser
 - Similar Response as LIF/TarGOST
- PAHs Fluoresce in Petroleum NAPLs
- CMOS Camera Captures Induced Fluorescence
- White Light or IR LED for Capturing of Images of Soil
- Geoprobe DI Viewer Software
- Tools are combined with HPT & EC

OIP Window

OIP-UV Analysis of Fluorescence

- Excitation (LED) Light 275nm (UV)
- Emission Light Filter 400-550nm (purple, blue, green)
- Records Data Like your digital camera!
 - HSV Hue, Saturation, & Value (Brightness)

Analysis of Fluorescence (Digital Photography) Gasoline **Crude Oil** Diesel

Advanced Site Characterization – March 2019

 \times

OIP-UV Images Captured Fluorescence Image under 275nm UV LED Light

Software Analysis of % Area Fluorescence (22.3% %AF)

Captured Soil Image under Visible (White) LED Light

Bioremediation Symposium – Baltimore, MD - April 2019

Captured

Analyzed

Captured

Typical OiHPT-UV Log

- Electrical
 Conductivity
- HPT Pressure/Flow
- % Area Fluorescence
- UV Images
- Visible Light Images
- Moving vs. Still Images

Bioremediation Symposium – Baltimore, MD - April 2019

Additional Post Processed Data (K, SEC, etc.)

GeoScience

Bioremediation Symposium – Baltimore, MD - April 2019

Groundwater Specific Electrical Conductance

View of Continuous Captured UV Images

- Imaged is captured every 1/20th of a foot.
- Can be viewed in DI Viewer software.
- Can be printed to a contact sheet.

5.jpg	Depth17_35.275.jpg	Depth17_40.275.jpg	Depth17_45.275.jpg
_			
5.jpg	Depth17_60.275.jpg	Depth17_65.275.jpg	Depth17_70.275.jpg
5.jpg	Depth17_85.275.jpg	Depth17_90.275.jpg	Depth17_95.275.jpg
5.jpg	Depth18_10.275.jpg	Depth18_15.275.jpg	Depth18_20.275.jpg
5.jpg	Depth18_35.275.jpg	Depth18_40.275.jpg	Depth18_45.275.jpg
5.jpg	Depth18_60.275.jpg	Depth18_65.275.jpg	Depth18_70.275.jpg
5 ing	Depth18, 85 275 inc	Depth18 90 275 inc	Depth18 95 275 inc
1F.A	Deputio_00.270.jpg	Deputro_B0.275.jpg	Departo_35.275.jpg

Quality Control

.nfo File Records ALL THIS DATA for Later Review:

- Logging Parameters Alarms:
 - Power, Voltage Indicate Camera & LED Health
- Sensor Response Tests (Every Log Run!)
 - OIP Fluorescence Standards Responses
 - Actual Gasoline, Diesel, and Oil Standards
 - HPT Pressure Sensor Response
 - Electrical Conductivity Response
- Confirmation Borings (Soil & GW)

• ASK FOR THE RAW DATA FILES FOR YOUR RECORDS!!

M-01a.zip SITE INFORMATION -- DIRECT IMAGE MIP+HPT PROBE Geoprobe DI Acquisition Software for Windows Version: 3.0 Build: 17007 EC PRE-LOG TESTS BYPASSED COMPANY: Vista GeoScience OPERATOR: DF PROJECT ID: 17151.01 CLIENT: AECOM UNITS: ENGLISH PROBE AND ARRAY: MH6530/6532 MiHPT Probe with Top Dipole LOCATION: Paris TX 100 INCH STRING POT USED ROD LENGTH: 5 feet MIP PRE-LOG RESPONSE TEST FILENAME: M-01a.pre.tim COMPOUND: Benz, TCE CONCENTRATION: 10, 10 ppm FLOW: 36.1 mL/min RESPONSE TEST START TIME: Thu Sep 28 2017 09:52:40 RESPONSE TEST ATTENUATION CHANGES TIME DET1 DET2 DET3 DET4 Ø 1 1 1 TRIP TIME: 45 sec Gas Used: nitrogen PRE-LOG HPT REFERENCE TEST VALUES PRE TEST TIME: Thu Sep 28 2017 10:04:40 TEST HPT PRESSURE (psi) FLOW (mL/min) HPT PRESSURE (kPa) TOP with FLOW=0 0.0 15.502 106.880 TOP with FLOW>0 15.889 304.3 109.550 BOTTOM with FLOW=0 15.299 0.0 105.480 BOTTOM with FLOW>0 15.677 302.6 108.090 EXPECTED FLOW=0 HPT DIFF.: 0.22 psi (1.5 kPa) +/- 10% ACTUAL FLOW=0 HPT DIFF.: 0.20 psi (1.4 kPa) TRANSDUCER TEST PASSED DETECTOR NAME: PID FID XSD None HPT IDEAL COEFFS: 2.2696e1,-2.2356 HPT SENSOR CAL NUMBERS: XD30850A,0.0000,0.0000,0.0000,0.0000,9.9460e-1,-1.1500 Temperature out of range (42.0 deg C) at 0.00 ft (0.000 m) Temperature out of range (38.8 deg C) at 0.00 ft (0.000 m) LOG START TIME: Thu Sep 28 2017 10:06:30

Examples of Mineral Fluorescence in OIP-UV Images These colors were all filtered out and not reported as %AF

Bioremediation Symposium – Baltimore, MD - April 2019

Fresh or Weathered Fluorescence?

(New spill bucket release at old site)

 Fresh fluorescence near new release

Dull fluorescence from old previous release

Boring with both types at different depths

Bioremediation Symposium – Baltimc

Boring #4, 10.35 ft.

Boring #16, 7.90 ft.

Boring #2, 7.55 ft.

Boring #4, 11.60 ft.

Other Potential Applications Beyond NAPL

Use Visible Light or UV to Find Injected Fluids or Slurries

- Visible Light Image Located **RPI BOS-200® Carbon**
- Tracer Dyes
- EVO, ORC, etc.
- Sand Fracture Placement
- Reagents with Color (e.g. **Permanganate**

Image of RPI BOS-200 seam under visible light

Comparison of OIP-UV and LIF/UVOST

- **Michigan UST Site**
- **Comparison Study with 40 offset borings**
- **OIP-UV & LIF/UVOST in Relative Response**
- **Intervals were Identical**
- **Similar Relative** Response

Case History: Confined and UnConfined Gasoline LNAPL

- OIP-UV / EC
- **Grand Junction, CO**
- **Unidentified Historic Gasoline Source**
- Identified Confining Conditions that Presented False Thickness of LNAPL in Some Monitor Wells

Courtesy CGRS Inc.

LNAPL Investigation Area - OIP-UV

Bioremediation Symposium – Baltimore, MD - April 2019

TRC LNAPL Short Course Example LNAPL Thickness Variation in Monitor Wells

Monitoring well is a giant pore!

Bioremediation Symposium – Baltimore, MD - April 2019

OIP-A07 Shows LNAPL Not as Bad as it Looks in Well!

- Well 20' from OIP Boring
- Thick Low Perm Clay
- •LNAPL in thin sand stringer confined below water table
- LNAPL displays <u>false</u> thickness in well.

ITRC LNAPL Short Course Example

Advanced Site Characterization – March 2019

OIP-B03 Shows LNAPL is as Bad as it Looks in Well!

- Well 10' from OIP Boring
- Thick Low Perm Clay
- LNAPL in main <u>unconfined</u> sand body.
- LNAPL displays <u>actual</u> thickness in well.

West to East Cross-Section (%AF & EC)

A wells demonstrate confined LNAPL conditions. B wells base of clay is higher, LNAPL is unconfined. Could the LNAPL migrate up dip under the confined clay?

Advanced Site Characterization – March 2019

"B" Wells

3D Model of LNAPL and Groundwater

HRSC CSM Case History: **Perched and Confined Gasoline LNAPL**

- OiHPT
- **Baytown**, **Texas**
- HPT Identified thick confining clay
- OIP Identified LNAPL in perched water table, and confined in deeper aquifer

Courtesy GeoStrata Environmental Consultants

Old Abandoned Gas Station, Baytown, TX

- Tanks long ago removed
- LNAPL in scattered wells
- Original Investigation, 1997
- 31 OIP-UV Borings
- 3 Confirmation Soil Cores
- Groundwater Table Modeled from MWs

24

Ground water Elevation Model Monitor Wells with Water and LNAPL Column - View Looking West

LNAPL Plume > 1% Area Fluorescence (%AF) Shows LNAPL in perched zone above water table, and confined 15' below water piezometric head.

Cross Sectional View of HPT Pressure Showing Massive Clay Layer

CSM Case History: Gasoline Plume Migrating Opposite of **Groundwater Gradient**

- OIP-UV (51 borings) and MiHpt (18 borings)
- Eastern Colorado Plains
- Identified Migration of LNAPL Plume moving opposite of ground water gradient

Courtesy CGRS Inc.

LNAPL Plume & Low Ground Water Table

- Groundwater Moving North – Both High and Low Seasons
- LNAPL Plume Migrated South >300 feet from Source Area
- Notice Narrow Channel
- Most LNAPL Confined
 Below Water Table

Vista GeoScience Subsurface Imaging Systems - High Resolution Site Characerization - 3D Conceputual Site Model OIP-UV-& MIP (PID) Boring Renderings High and Low Season Groundwater High Season Water Ta Low Season Water Table

OIP Borehole - Log10 OIP % Fluorescence

MiHpt Borehole - Log10 PID (u∨)

Bidremediation Symposium – Baltimore, MD - April 2019

OIP Borehole - Log10 OIP % Fluorescence

MiHpt Borehole - Log10 PID (uV)

Bioremediation Symposium – Baltimore, MD - April 2019

N

QUESTIONS?

USING THE COMBINED UV OPTICAL INLAGE PROFILER AND HYDRAULIC PROFILE TOOL WITH MODELING TOOLS TO VISUALIZE COMPLEX

S

Geosgienge

Acknowledgements for use of their site data:

International Symposium on **Bioremediation and** Sustainable Environment