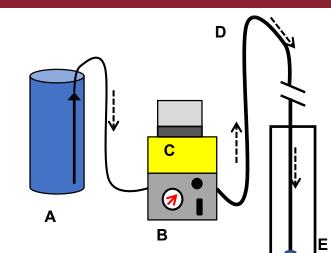


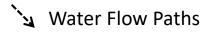
Improved Methods For Estimating K with Hydraulic Profiling Tool (HPT)

<u>Ki Young Cha¹</u>, Robert C Borden¹, Bilgen Yuncu¹ and Gaisheng Liu²

Fifth International Symposium on Bioremediation and Sustainable Environmental Technologies Baltimore, Maryland - April 15-18, 2019

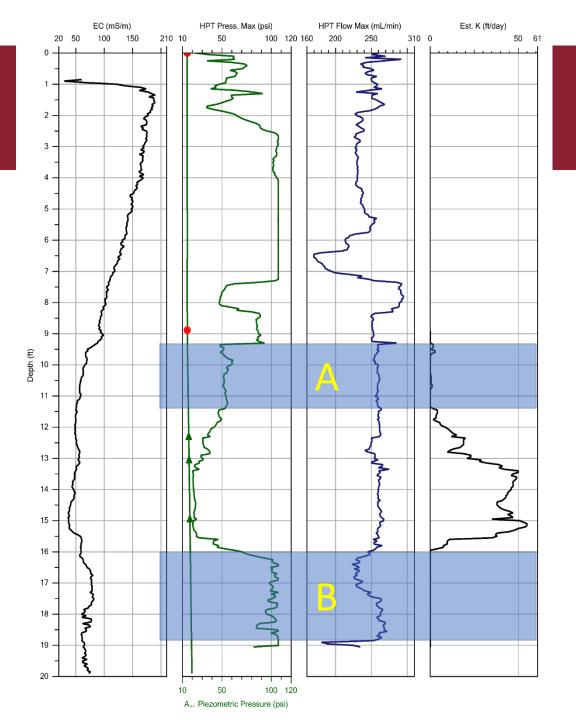
Outline


- Introduction of Hydraulic Profiling Tool (HPT)
- Challenges
 - Low K zone
 - Lack of analytical methods
- Approaches
 - Physical improvement
 - Analytical method
- Field Validation
 - Testing tool and equation


Hydraulic Profiling Tool (HPT)

 $\bullet \bullet \bullet \bullet$

G


- A) Water Tank
- B) Pump & Flow Meter
- C) Electronics/computer
- D) Trunkline
- E) Pressure Sensor
- F) Screened Injection Port
- G) Elec. Conductivity Array

- ✓ Boring Speed: 2 [cm/s]
- ✓ Injection flow rate (Q) 50-500 [mL/min]
- ✓ Monitor injection pressure (P)
- Benefits
 - ✓ High resolution vertical profiles
 - ✓ Fast and cost effective
 - ✓ Less disturbance

Estimates <u>hydraulic conductivity (K)</u> from the relationship to the <u>flow rate (Q)</u> and <u>pressure (P)</u>

HPT output

• K estimation

- From Flow Rate [ml/min] and Pressure [psi]
- Electrical Conductivity is supplementary

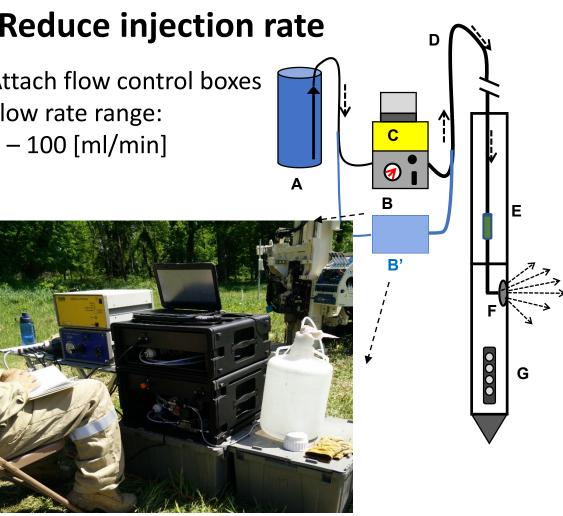
• Limitations

- Low K zones measurement
- Limited understanding about acquired data

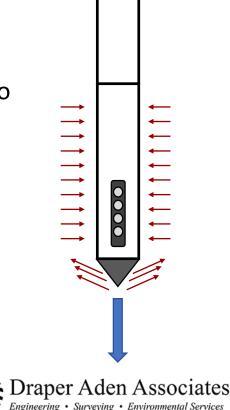
Challenges

- Pressure build up
- Data analysis procedures

How can we improve accuracy of K measurements in Lower K zones?


- 1. Lower the pressure (Physical improvement)
- 2. Improve analytical method

Lower the Pressure

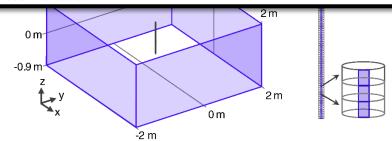

1. Reduce injection rate

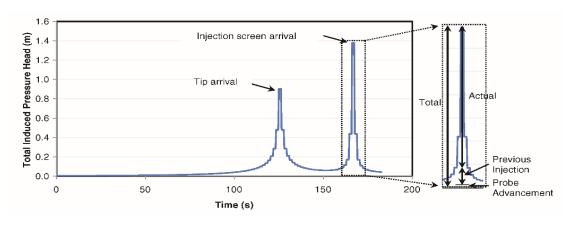
- Attach flow control boxes
- Flow rate range: 1 - 100 [ml/min]

2. Slower rod advancement

- Boring activity cause material displacement
- At 2cm/s, material displacement is equivalent to a water injection rate of 1800 [ml/min]
- Less significant pressure compare to the direct injection due to the area difference

Numerical Sir Physical Modi

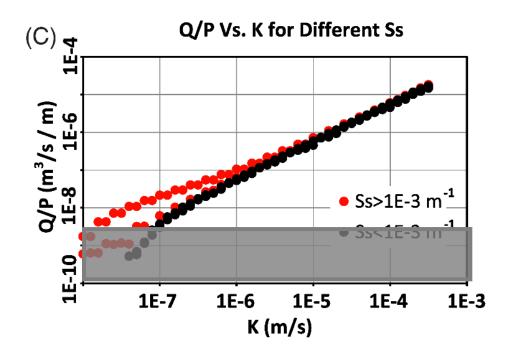

• Model setup


Simulation Assessment of Direct Push Injection Logging for High–Resolution Aquifer Characterization

✓ Simulated water injection po by Gaisheng Liu^{1,2}, Robert C. Borden³, and James J. Butler Jr.¹

Groundwater

- ✓ Fine mesh around injection screen 0.2 [cm]
- ✓ Varying K, Ss, and Rod Speed
- Output
 - ✓ Three sources of pressure:
 - [Injection; previous injection; probe moving]
 - $\checkmark\,$ Injection and probe moving are considered
 - Contribution from previous depth is proportional

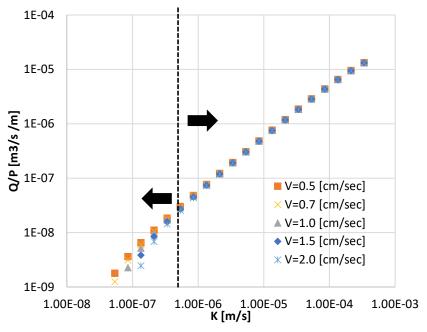


Site Condition for Q/P vs. K

• Pressure Behavior is different for specific storage and K

Q/P is		К		
		< 10 ⁻⁶ [m/s]	> 10 ⁻⁶ [m/s]	
Ss	< 10 ⁻³ [1/m]	f(K & Ss _{min})	f(K)	
	> 10 ⁻³ [1/m]	f(K & Ss)	f(K)	

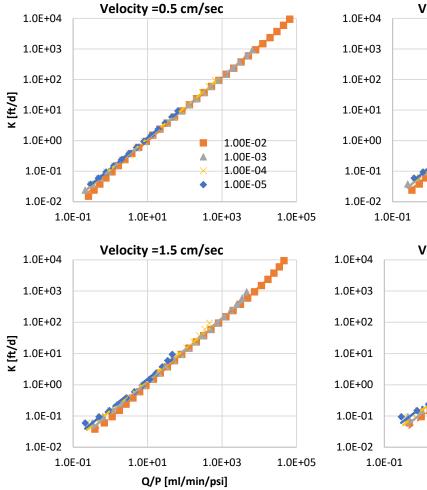
*If Q/P is less than 5x10⁻⁹ [m3/s/m], measurement limit problem arises

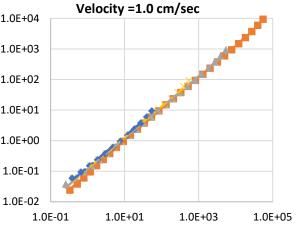

Operational Condition for Q/P vs. K

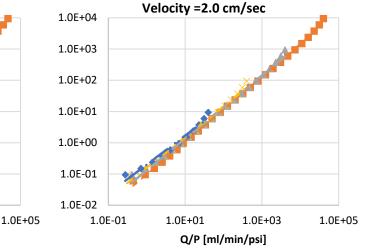
- Pressure from Injection and Rod Advancement (operational)
- Slower Rod speed:

Ss =10⁻⁴ m-1

2) Gives more time to recover


3) Increases pressure from injection

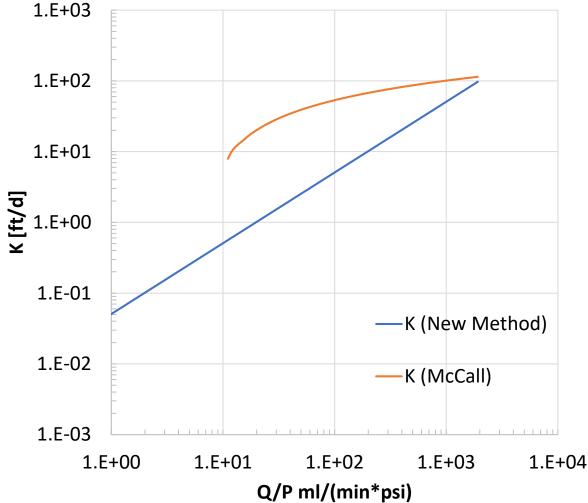

[Recommendation] Rod Advancement Speed =		К		
		< 5x10 ⁻⁷ [m/s]	> 5x10 ⁻⁷ [m/s]	
Ss	< 10 ⁻³ [1/m]	0.5 [cm/sec]	2 [cm/s]	
	> 10 ⁻³ [1/m]	0.5 [cm/sec]	2 [cm/s]	



HPT (Q/P) and K relationship

 $[K] = a * [Q/P]^{b}$

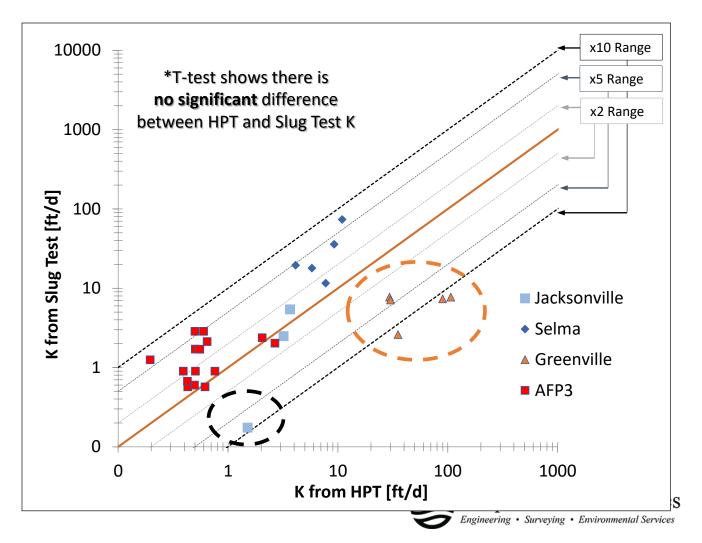



V = 0.5 [cm/sec]	SS [1/m]	а	b	R ²
	0.01	0.085	1.04	0.99
	0.001	0.109	1.02	0.99
	0.0001	0.115	1.01	0.99
	0.00001	0.121	1.01	0.99
V = 1.0 [cm/sec]	SS [1/m]	а	b	R ²
	0.01	0.085	1.05	0.99
	0.001	0.116	1.01	0.99
	0.0001	0.121	1.02	0.99
	0.00001	0.134	1.01	0.99
V = 1.5 [cm/sec]	SS [1/m]	а	b	R ²
	0.01	0.089	1.05	0.99
	0.001	0.124	1.10	0.99
	0.0001	0.147	0.99	0.99
	0.00001	0.173	0.95	0.98
V = 2.0 [cm/sec]	SS [1/m]	а	b	R ²
	0.01	0.097	1.04	0.99
	0.001	0.132	1.01	0.99
	0.0001	0.161	0.98	0.98
	0.0001			

New vs. Current Method

McCall (2010) equation [Est. K] = 20.644 x Ln[Q/P]-41.71 ➤ Logarithmic function New equation [When K>10⁻⁶ m/s] [Est. K] = 0.1224 x [Q/P]

Linear function



SOCIATES

Field Data with New Method

- Standard HPT (2cm/sec)
- Approximately 90% of HPT-K are within 1 order Slug Test-K
- Jacksonville (Black): Slug Test shows 0.17 ft/day Incorrect measurement from HPT
- Greenville (Orange): Partially Submerged MW
- Skin effect? Slug Test K /HPT K ratio

Site	Slug K/ HPT K			
Site	Mean	Stdev	n	
Jacksonville	1.13	0.50	2	
Selma	3.99	1.95	5	
Greenville	0.12	0.10	5	
AFP3	2.69	1.84	14	
Total	2.33	2.02	26	

Lesson Learned

- Hydraulic Conductivity in lower K zones can be measured
- Lower Pressure by
 - Lowering injection rate & Slower rod advancement
- Slower rod advancement is recommended depending on
 - Specific Storage & Target K
- Linear relationship between K and Q/P from HPT
 - If K > 10⁻⁶ [m/s] (= 0.3 ft/day), Est. K (ft/d) = 0.1224 x [Q/P]
 - If $K < 10^{-6} [m/s]$, Est. K (ft/d) = a x [Q/P]^b \Rightarrow a & b will be vary for conditions
- Skin Effect:
 - HPT boring could have skin effect from probe advancement
 - Skin factor (Sf) varies from 0.12 to 4

QUESTIONS ?

