

Using Factor Analysis to Assess Bioremediation Performance at a Contaminated Site in South America

Staci L. Capozzi, Cesar Merjan,

M. Mahdi Chitsaz, Patricia Voese,

E. Erin Mack and Lisa A. Rodenburg

Geosyntec consultants

Bioremediation Symposium April 17, 2019

Positive Matrix Factorization (PMF)

Chemosphere 211 (2018) 515-523

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Using positive matrix factorization to investigate microbial dehalogenation of chlorinated benzenes in groundwater at a historically contaminated site

Staci L. Capozzi ^{a,*}, Lisa A. Rodenburg ^b, Valdis Krumins ^b, Donna E. Fennell ^b, E. Erin Mack ^c

- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
- ^c Corporate Remediation Group, E. I. DuPont de Nemours and Company, Wilmington, DE, 19805, United States
- Leverage existing investment in data collection!
- Improves understanding and interrogation of the data:
 - Can determine how much of a contaminant is from multiple primary sources vs. degradation; and
 - Can reveal trends in redox conditions.
- Harnesses existing information through meta-analysis.

PMF Workflow Diagram

-Soil or sediment-Surface water-Waste water

-Ground water -Air -Biota

Database

-Conc. data
-Analytical method
-Ancillary data
-Spatial Coordinates

Analysis:

Positive Matrix Factorization

PMF2 model

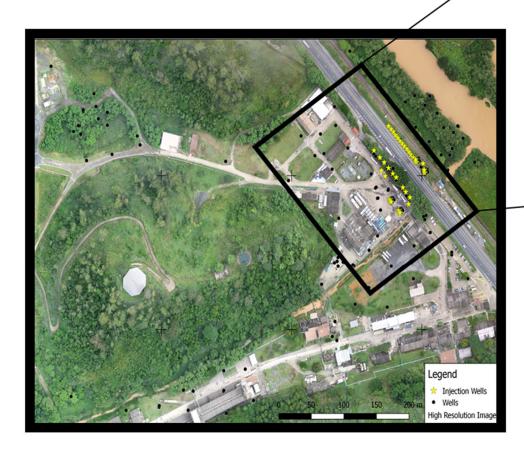
Eqn: X = G + E

Input Matrices

-Data (Conc.)

-Detection Limit

-Uncertainty


Source profiles or "fingerprints"

- Loading amount of each source

Study Site in South America

- Specialty chemical manufacturing facility
- Biotreatment system operating since 2011

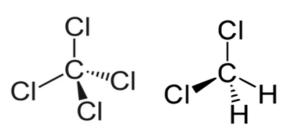
History of Electron Donor Injections

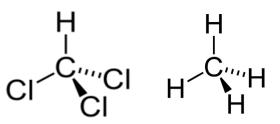
Remedy	Time Interval		
MNA	Jan. 2004 – Dec. 2010		
ERD			
Donor solution #1	Jan. 2011 – Nov. 2013		
MNA	Dec. 2013 - May 2015		
ERD			
Donor solution #2	June 2015 - April 2017		
ERD			
Donor solution #3	May 2017 - Present		

- MNA Monitored Natural Attenuation
- ERD Enhanced Reductive Dechlorination

Objectives

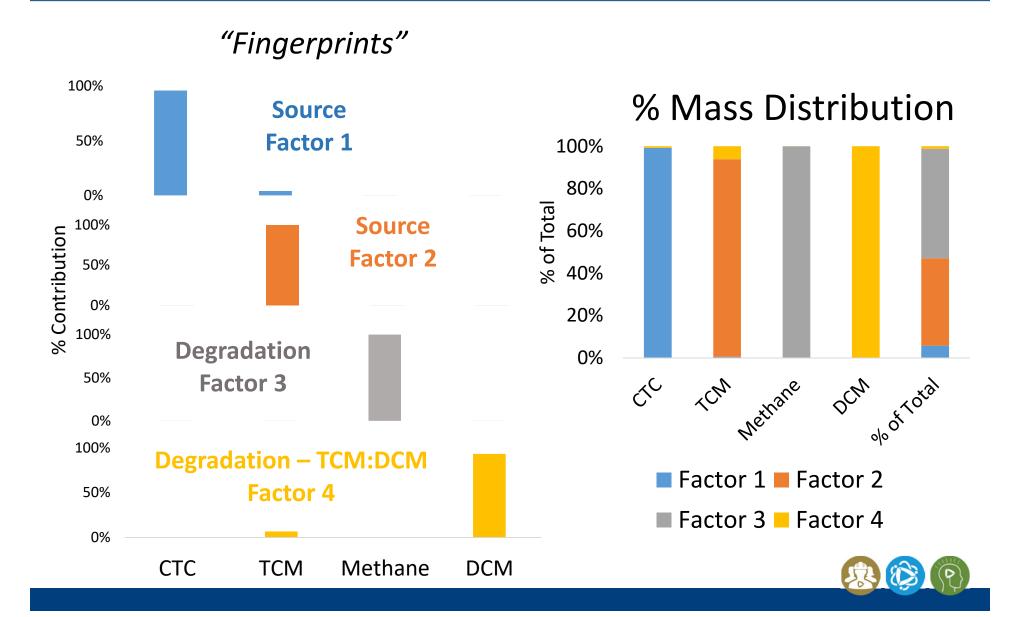
- Analyze groundwater database using PMF2;
- Examine fingerprints indicative of dechlorination or other transformations;
- Examine time trends of fingerprints;
- Look at spatial trends;
- Investigate the relationships between contaminant fingerprints and secondary data; and
- Use results from the above tasks and assess bioremediation performance.



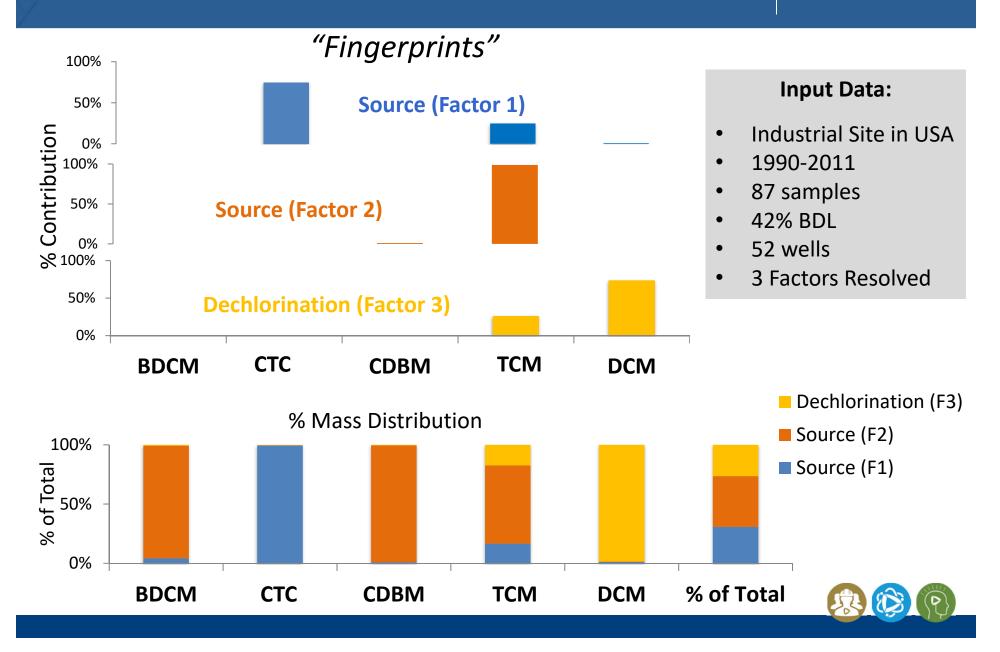

Halomethanes

Input Data Summary

- 177 samples
- 33% BDL
- January 29, 2004 March 24, 2017
- 65 wells

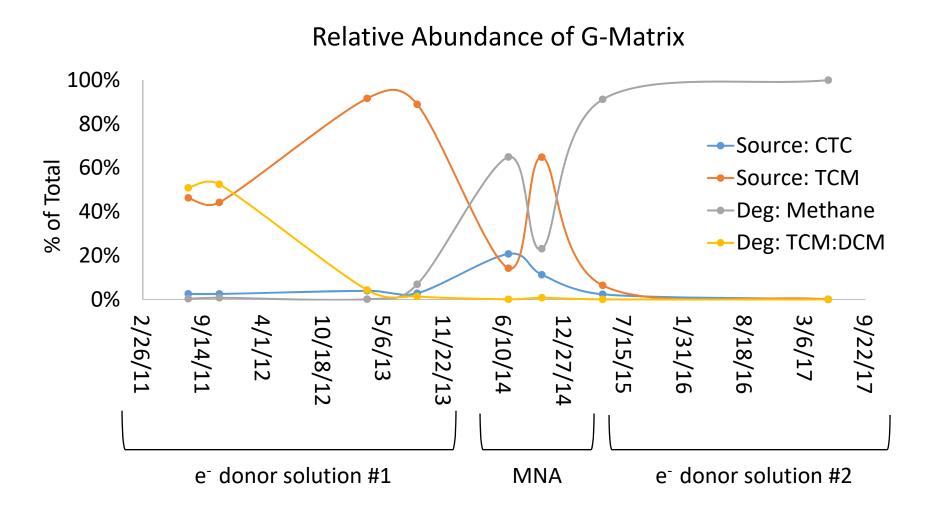

Analytes:

- Carbon tetrachloride (CTC)
- Chloroform, trichloromethane (TCM)
- Methylene chloride, dichloromethane (DCM)
- Methane
- Not included: Chloromethane (n = 7)


4-Factor Halomethane Solution

Comparison to Another Site

Take away notes -



- PMF offer unique ability to resolve the kind of intractable combination of processes that occur in groundwater systems
 - Individual degradation processes can serve as separate 'sources'
 - The PMF model is a source apportionment tool

Temporal Trends: Monitoring Well

Located ~1.4m away from an injection well

Annual Trends: Factor Loading Amount

The average percent of the total concentration of each factor in each year

		Source:	Source:	Degradation:	Degradation:
	Year	CTC	TCM	DCM:TCM	Methane
MNA	2004	9%	46%	10%	35%
Ξ	2009	30%	67%	3%	0%
	2011	5%	67%	27%	0%
ERD	2012	11%	82%	6%	1%
4	2013	14%	50%	0%	36%
MNA	2014	12%	29%	0%	59%
	2015	9%	31%	0%	60%
ERD	2016	52%	47%	0%	0%
	2017	9%	37%	0%	54%

Amendments did not promote CTC and TCM dechlorination to DCM

Correlations with Secondary Data

Geosyntec consultants

- Dissolved Oxygen (DO)
- Oxidation Reduction Potential (ORP)
- pH
- Temperature (Temp.)
- Turbidity
- Total Organic Carbon (TOC)
- Total Iron
- Sulfate

Spearman's Rank Order Correlations

Correlations to the 4-Factor <u>Halomethane</u> PMF Solution Rank of % of total vs rank of secondary data

% Factor	DO (mg/L)	ORP (mV)	Sulfate (mg/L)	Total Iron (μg/L)	TOC (mg/L)	pH (UPH)	Temp. (°C)	Turbidity (NTU)	Specific Conductance (µS/cm)	Vinyl Chloride (ug/L)
Source: CTC	0	+	0			0	0			
Source: TCM	0	+	0		0					
Degradation TCM:DCM	0	0	0	0	0	-	+	+	+	
Degradation: Methane	0		0	+	+	+	0	0	0	+
n	96	71	102	103	95	113	96	101	96	52

- Positive Correlation
- -- Negative Correlation
- **0** No Correlation

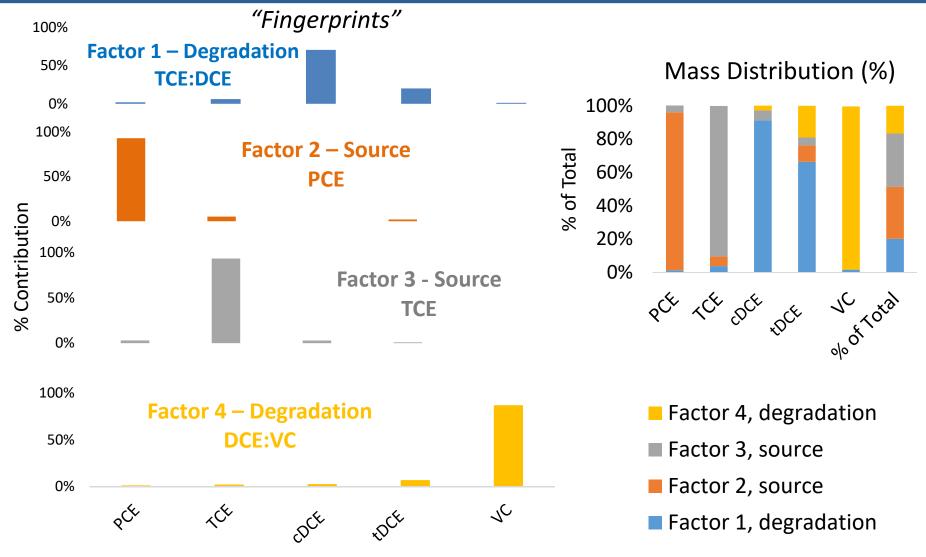
Chlorinated ethenes

- 81 samples
- Dataset 17% BDL
- January 29, 2004 March 24, 2017
- 61 wells
- Tetrachloroethene (PCE)
- Trichloroethene (TCE)
- cis-1,2-Dichloroethene (cDCE)
- trans-1,2-Dichloroethene (tDCE)
- Vinyl Chloride (VC)

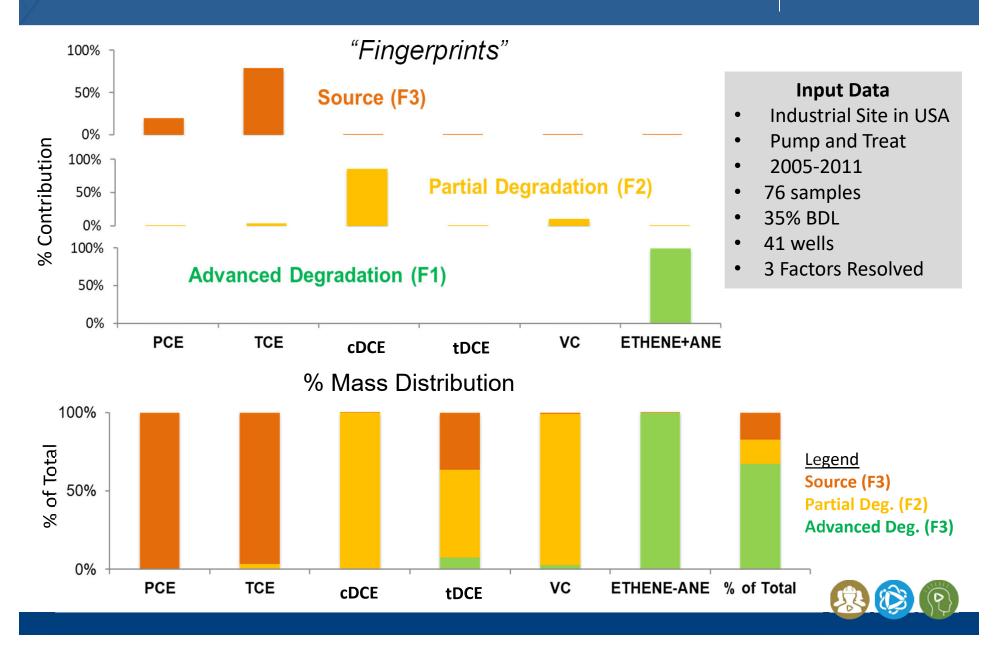
Not included

Ethene (n = 20)

Ethane (n = 6)


$$CI$$
 CI CI CI CI

4-Factor Chlorinated Ethene Solution



Comparison to Another Site

Annual Trends: Factor Loading Amount

The average percent of the total concentration of each factor in each year

		Source:	Source:	Degradation:	Degradation:
	Year	PCE	TCE	TCE:DCE	DCE:VC
MNA	2004	38%	21%	16%	25%
	2009	17%	30%	29%	24%
ERD	2011	31%	60%	6%	3%
	2012	60%	12%	17%	12%
4	2013	21%	27%	38%	13%
MNA	2014	29%	14%	36%	21%
~	2015	30%	23%	15%	32%
ERD	2016	17%	41%	10%	32%
	2017	34%	41%	15%	11%

Compare Redox Conditions

Interpretation of Factor	Chlorinate	ed Ethenes	Halomethanes		
South America:	Positive Correlations	Negative Correlations	Positive Correlations	Negative Correlations	
Source(s)	pH, Total Fe, Spec. Cond.	None	ORP	pH, Total Fe, TOC, Temp., Turbidity, Spec. Cond.	
South America: Degradation pathways	pH, Total Fe, Methane, Temperature, Spec. Cond.	pH, Total Fe, TOC, ORP, Turbidity, Temp., Sulfate Turbidity, Spec. Cond.		ORP	
USA:	Positive Correlations	Negative Correlations	Positive Correlations	Negative Correlations	
Source(s)	None	ORP, ALK	DO, Ferric Fe	TOC, Temp.	
USA: Degradation pathways	Ferric Iron, Methane, ALK	Sulfate	pH, TOC, ORP	None	

Benefits & Future Directions

Benefits

- Leverage existing investment in data collection;
- Improves understanding and interrogation of the data; and
- Motivation of the industry to moving into using meta-analysis in order to harness existing information.

Future Directions

- Closer evaluation the performance of the biotreatment system;
- Explore the spatial analysis;
- Integrate other COCs & evaluate sediment data; and
- Test approach on a unique data set (e.g., δ¹³C data) collected from a CSIA study at the Site.

Acknowledgments

- DowDuPont / Corteva
 - E. Erin Mack
 - James Henderson
 - Paloma Carvalho
- Protel
- Geosyntec Consultants
- Rutgers DES

Questions?

Contact Information:

Staci L. Capozzi, PhD

TEL: 202-407-2592

Email: scapozzi@geosyntec.com

Reference of Article:

Capozzi, S.L.; Rodenburg, L.A.; Krumins, V.; Fennell, D.E; Mack, E.E. Using positive matrix factorization to investigate microbial dehalogenation in groundwater at a historically contaminated site. *Chemosphere*. 2018, 211, 515-523.

