

Improving Decision Making for Vadose Zone Remediation of Volatile Contaminants

Christian Johnson

April 17, 2019

U.S. DEPARTMENT OF BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

Jennifer Segura

Christian Johnson Michael Truex Guzel Tartakovsky Jun Song Pacific Northwest **Rob Hinchee**

Nationwide Environmental Services, Inc.

Dave Becker

US Army Corps of Engineers ®

- Soil Vapor Extraction
 - Remedial Decisions
 - Guidance
- SVEET Tool to support remedial decisions
- ESTCP project: update/expand SVEET
 - Software update and prototype results
 - Planned Field Demonstration

Soil Vapor Extraction

- Commonly used, effective technology
 - Volatile contaminants in vadose zone
 - But, need to determine appropriate operational duration
- Remedial Questions
 - Has a point been reached where SVE can be terminated?
 - Will the remaining mass represent a threat?
 - Can alternative technologies address the remaining mass?
 - Cost effectiveness of active SVE in question
 - Is SVE needed?
 - Is there a risk to groundwater or via vapor intrusion?
 - What are the SVE performance goals?
 - For a new or an existing system
 - What mass flux from contaminated zone or vadose soil vapor concentration is acceptable?

SVE Guidance

- Soil Vapor Extraction System Optimization, Transition, and Closure Guidance (PNNL-21843)
 - Process described by PNNL, USACE, & EPA
 - Develop/update Conceptual Site Model (incorporating new data)
 - Review environmental impact pathways and regulatory context
 - Quantify impacts of remaining source material
 - Apply decision approach to determine path forward
 - Applied at Hanford
 - Closure of 200-PW-1 OU SVE system for carbon tetrachloride (DOE, 2016)
- Key component was quantifying impacts
 - Tool for this step to facilitate decision making

SVEET – Soil Vapor Extraction Endstate Tool

• SVEET – an existing, well-documented tool

- Spreadsheet interface to access rigorous 3D numerical model results
 - Simple calculations using pre-modeled results (does not run simulations)
- Estimates VOC concentrations at a distance from a defined source
- Available at <u>http://bioprocess.pnnl.gov/SVEET_Request.htm</u>

• Tool use

- Define site using structured framework
- Tool accesses a lookup table of pre-modeled 3D simulation results
- Tool interpolates and scales to provide site-specific results
- Results are instantaneous
- Easy to change the inputs for rapid sensitivity assessments

STOMP Code and Simulations

- STOMP (Subsurface Transport Over Multiple Phases)
- Fully-implicit, integrated, 3D, multi-phase, finite difference model
 - (White and Oostrom, 2006)
 - Water, organic compounds, and air
- Assumptions/configuration
 - The SVE process itself is not simulated
 - Vadose zone source is constant (no source depletion)
 - Immobile, organic, liquid-phase source
 - Transport simulations conducted until steady-state conditions reached
 - Thus, effects of sorption can be neglected (Carroll et al., 2012)
 - Vapor-phase diffusive transport dominates

Gas Concentration (mg/L)

SVEET – Current Interface

- User friendly spreadsheet tool
 - Rapid calculation
 - Rigorous underlying basis
- Supports remedial decisions
 - Estimates impact of vadose zone contamination on groundwater at a point of compliance
 - Improved technical basis for better decision making
- Can be applied using readily available site data

		Α	В	С	D	E	F	GН		Ј К	L	
	21	SVF F	ndstate Tool (SVFFT	.)	_	_	Version 1.0.0				_	
	22	Describe	ed in: Soil Vapor Extraction System Optin	nization Tr	on Transition and Closure Guidance		2012 Son 24 Name	Permissible Range	Key Values			
ts	23	Describe			anonion, and clobal	e Guidanoe	2012-0cp-24	Т	10 - 30	20		
	20	Lleor Inn	xu+					ω	1-9ª	1, 5, 9ª		
	25	user mp	Scopario Namo:		Caso	Caso B	C 250 C	R	0.4 - 7.5	0.4		
	20		Conteminant:	_				11	10-00	10, 30, 60		
	20	-		-	10.0	ICE 00	ICE	Z	varies	-	Allow ω down to	
	27	1	I emperature:		19.6	20	20	W	10 - 50 ^e	-	Sr = 0.05?	
	30	ω	Avg. Moisture Content:	[Wt %]	8	1	1	q	0.005 - 0.3	0.005, 0.03, 0.3	FALSE	
	31	R	Avg. Recharge:	[cm/yr]	0.5	0.5	0.5	d	10', 25, 50, 75, 100	10, 25, 50, 75, 100		
	32	VZT	Vadose Zone Thickness:	[m]	60	30	30	S	1-2000	159		
0	33	L1	Depth to Top of Source:	[m]	40	21	21	- Ailara	0.1-5000	from STOMP simulations		
	34	Z	Source Thickness:	[m]	10	5	5			at 3 months elapsed time	<u>e</u>	
	35	w (= I)	Source Width (= Length):	[m]	50	15	15		See footnotes below			
	36	q	GW Darcy Velocity:	[m/day]	0.3	0.165	0.165		Re	charge		
	37	d	Distance to Compliance Well:	[m]	25	50	50	F	4	$\mathbf{b} \mathbf{b} \mathbf{b}$		
	38	S	Compl. Well Screen Length:	[m]	5	10	10					
	39		Source Strength Input Type:	—	Gas Concentration	Gas Concentration	Mass Discharge		4		1	
	40	C _{gs}	Source Gas Concentration:	[ppmv]	159	50						
	41	M _{src}	Source Mass Discharge:	[g/day]			10			Vadose Zoi	ne III	
_	42							`		W	ē	
O	43	Calculat	ed Input						L1 w	7	aŭ	
alce	46	STR	Source Thickness Ratio*:	[]	0.167	0.167	0.167			Source	je	
	48	SA	Areal Footprint of Source*:	[m ²]	2500	225	225	VZT	+	XI		
	50	RSP	Relative Source Position*:	[]	4.00	5.25	5.25		<u> </u>) a		
O	52	L2	Distance - Source to GW:	[m]	10.00	4.00	4.00					
	53	н	Henry's Law Constant**:	[]	0.890	0.263	0.263		L2		o.+=	
<u> </u>	61									Groundwater	S+8	
Ξ	62	Result -	Estimated Groundwater Contam	Well			X					
ົ	65	Cw	Final Groundwater Conc'n:	[µg/L]	16	15	31		▶ q	(Contaminant, C	gs or M _{src}	
Ö	66											
Ñ	67		* See below for permissible ranges of intermediate calculated values.									
	68		** See the 'HLC' worksheet for details of	the temper	rature-dependent ca	alculation of H.						
	69											
	70	Parameter	Permissible Key Values ^a The	pre-modeled	scenarios actually	use residual saturat	ion (S _r), not °	The range for L	1 is variable (with a ma	ximum range of 0.5 - 4	9 m) because	
	71	Name	Range Rey values gravin	netric moist	ure content. Howeve is used as the input	r, for user convenience parameter The key	e gravimetric values for S.	it is a function	is a function of the permissible range for RSP and the input values of z			
	72	SA	100 - 2500 100, 400, 900, 2500 were	0.05, 0.3, a	nd 0.55, which corres	pond to moisture cont	ent values of	The range for a	z is variable (with a max	kimum range of 1 - 30	m) because it	
	73	RSP	0.1 - 10 0.1, 1, 10 0.807	8, 4.843, a	and 8.879, respective range is truncated a	ely. Again for conv at 1 wt% and extend	enience, the	is a function of	function of the permissible range for STR and the input value of VZT.			
	74	L2	0.5 - 49 — althou	igh values a	t or above 8.879 wt%	are treated as S _r value	es of 0.55.	square footprin	t of the source area.	permissible range to		
	75	н	specific 0.89 The confir	0.89 • The applicability of the estimation approach used here should be • The source width must be less than or equal to 20 m to use d = 10.						= 10.		
	76		4.2.2.	1 of the	PNNL report entitle	d Soil Vapor Extra	ction System					
	77		Optin	lization, Tra	nsition, and Closure G	<i>iuidanc</i> e for further dis	cussion.					
	78											
	70											
	I		Notice SVEET / HLC									

Generalized Conceptual Model as a Framework for Analysis

Props.	Τ ω q VZT RSP	 temperature moisture content groundwater Darcy flux vadose zone thickness relative source position 	Τ, ω
ons	STR	= LT / L2 : source thickness ratio = z / VZT	
imensi	SA	: source area footprint = w × w	
	d	: horizontal distance from source center to compliance well	VZT
	S	: screen length	
	dx, dy,	dz : distance to soil gas location	
rce ngth	C_{gs}	: vapor concentration of the	
Soul		: source vapor mass discharge	

ESTCP Project for Updating/Expanding SVEET

- DoD has many sites
 - wider range of characteristics than permissible SVEET inputs
- Elements of the update
 - Additional contaminants
 - Expanded parameter ranges
 - Refined input structure / user interface
 - Soil gas items, expanded ranges, etc.
 - Expanded output options
 - GW concentration at user-specified downgradient distance
 - Vadose zone gas concentration (for vapor intrusion evaluations)
- Field Demonstration
 - Ground-truthing the SVEET results
 - Assess applicability / usability

Partial List:						
Curre	Update					
Contaminants: Chloroform Dichloromethane Chloromethane Chloroethane Vinyl Chloride Tetrachloroethene Trichloroethene	Carbon Tetrachloride cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane	Add these contaminants: 1,2,3-Trichloropropane Dichloropropane isomers Chlorobenzene BTEX constituents/generic TPH Freons (11, 12, 113) 1,4-Dioxane				
1,1-Dichloroethene	1,1-Dichloroethane 1,2-Dichloroethane	Acetone MTBE	MEK MIBK			
<i>GW Monitoring Well Le</i> 10, 25, 50, 75 and 1 groundwater flow ce	Allow user-specified distance ≤ 950 m, along centerline					
Vadose Zone Soil Gas Not a SVEET output	Allow user-specified lateral location & depth of 1 or 4 m (for sub-slab or basement)					
Relative Water Saturat 0.05 – 0.55 (1 – 9 wi	0.05 – 0.75 (1 – 12 wt%) Allows wetter conditions					
Vadose Zone Thicknes	3 – 150 m Allows thinner/thicker vadose					
Source Thickness Rati	0.1 – 0.75 Allows a thicker source zone					
Relative Source Position	0.1 – 50 Allows source closer to GW					
Source Footprint (squa	100 – 10,000 m² Allows bigger source area					

Survey of DoD RPMs

- Surveyed remedial project managers regarding their SVE sites
- Found widespread interest and need for the tool
- Identified parameters needing expanded permissible ranges
- Improvements will make SVEET a useful tool at a majority of sites

Example Survey Results

Expansion of Permissible Parameter Ranges

- Expand ranges to address DoD site characteristics, as identified from survey
- Full matrix of permutations is 7680 simulations
 - Exclude unlikely scenarios →
 5760 simulations
 - Completed using PNNL supercomputer

Parameter	Evaluation Points as the Basis for Interpolation						
Residual Moisture Saturation		0.05	0.3	0.55	0.75		
Source Thickness Ratio		0.1	0.25	0.5	0.75		
Vadose Zone Thickness	3	10	30	60	110	150	
Source Area (m²)		100	400	900	2,500	10,000	
Groundwater Velocity (m/day)		0.005	0.03	0.3	1		
Relative Source Position		0.1	1	10	50		

E.g., unlikely would be a 110 m thick vadose zone with 75% of thickness as source area

Simulation Results – Groundwater Concentrations

- Examples of the variation in simulation results
- Looking at bounding cases changing a single parameter
 - Soil moisture
 - Source thickness ratio
 - Relative source position
 - Groundwater Darcy velocity

Residual Saturation (Sr)

- Increasing moisture content decreases pore space for vapor diffusion
 - Less mass transfer into groundwater

Source **Thickness** Ratio (STR)

 Thicker sources have more diffusion out the sides of the source

0.014

0.012

0.01

0.008

0.006

0.004 0.002

0

200

Sr

STR

RSP

Relative Concentration

STR = 0.25

400

0.3 %

0.25

1

600

Base Case

q

SA

Distance from Source Center (m)

• STR has small impact on groundwater concentration for the same downgradient distance

Relative Source Position (RSP)

• Near-surface sources lose more mass to atmosphere

0.014

0.012

0.01

0.008

0.006

0.004

0

Ω

200

Sr

STR

RSP

Relative Concentration

• Near-groundwater sources transfer more mass into the groundwater

VZT 3

-D-VZT 10

-____VZT 30

1000

0.3 m/d

900 m²

800

screen 9 m

RSP = 1.0

400

0.3 %

0.25

1

600

Base Case

q

SA

Distance from Source Center (m)

Groundwater Darcy Velocity (q)

- Groundwater flow has a significant effect on amount of diffusional mass transfer
 - High flow has much less mass transfer
 - Low flow rate has much more mass transfer

Ongoing Work: Field Demonstration for Ground Truthing Examples

- McClellan IC1
 - ~25 years of data
 - 20 years of SVE with 6 significant rebound tests
 - Site closed VLEACH and MT3D used for support
- Cold Regions Lab (CREEL)
 - Very well characterized
 - SVE ~2 years
 - Pre-SVE data available
 - No DNAPL in groundwater
 - Vapor Intrusion Issues

Ongoing Work: Field Demonstration for Applicability / Implementation

- SPAWAR, IR Site 11
 - 3 years of SVE operation
 - Extensive data, soil vapor, & groundwater
 - Site conducting additional characterization and assessment
 - Interested in SVEET with VI component
- Tooele (TEAD) Landfill Site
 - Depth to water 285 feet (87 m)
 - SVE to continue until no impact to groundwater (RCRA site)
 - SVE operated beginning in early 2013
 - Removal has greatly reduced contamination
 - Costs to operate ~400K/yr
 - Tooele has 4 other nearby candidate sites
 - Costs to operate ~270K/yr

Conclusions

- SVEET is a useful tool
 - Estimate long-term impacts of a vadose zone source
 - On groundwater and soil gas concentrations
- Concentration estimates support decisions
 - Input for decisions about SVE termination, optimization, or transition
 - Provides transport estimates needed to support remedial decisions
 - Cost savings over continued operations that provide little benefit
- Current work expands range of permissible parameter values
 - Applicable to more sites
- Uncertainty in site parameters...
 - Testing parameter significance is quick and easy
 - Can determine where additional data would be most useful

References

SVEET Website: <u>http://bioprocess.pnnl.gov/SVEET_Request.htm</u> (has v. 1.0 currently; v. 2.0 is targeted for October, 2019)

- Truex, M.J., D.J. Becker, M.A. Simon, M. Oostrom, A.K. Rice, and C.D. Johnson. 2013. *Soil Vapor Extraction System Optimization, Transition, and Closure Guidance*. PNNL-21843, Pacific Northwest National Laboratory, Richland, Washington. (Available at the website above.)
- Carroll, K.C., M. Oostrom, M.J. Truex, V.J. Rohay, and M.L. Brusseau. 2012. "Assessing Performance and Closure for Soil Vapor Extraction: Integrating Vapor Discharge and Impact to Groundwater Quality." *J. Contam. Hydrol.*, 128(1-4):71-82.
- DOE. 2016. *Response Action Report for the 200-PW-1 Operable Unit Soil Vapor Extraction Remediation*. DOE/RL-2014-48, REV 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- White, M.D., and M. Oostrom. 2006. STOMP Subsurface Transport Over Multiple Phases, Version 4.0, User's Guide. PNNL-15782, Pacific Northwest National Laboratory, Richland, Washington.

Related Publications:

- Oostrom, M., M.J. Truex, A.K. Rice, C.D. Johnson, D.J. Becker, and M. Simon. 2014. "Estimating the Impact of Vadose Zone Sources on Groundwater to Support Performance Assessment of Soil Vapor Extraction. *Groundwater Monitoring & Remediation*, 34(2):71-84.
- Oostrom, M, M.J. Truex, G.D. Tartakovsky, and T.W. Wietsma. 2010. "Three-Dimensional Simulation of Volatile Organic Compound Mass Flux from the Vadose Zone to Groundwater." *Ground Water Monitoring* & *Remediation*. 30(3):45-56.
- Truex, M.J., M. Oostrom, and M.L. Brusseau. 2009. "Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Groundwater." *Ground Water Monitoring & Remediation*. 29(2):63-72. 20