Alternative Electron Donor Utilization in the Reductive Dechlorination Processes by Organisms in the class Dehalococcoidia: Dehalogenimonas Spp.

Trent Key and William Moe

Overview

- Background and Isolation
- Electron Donor Utilization Experiments

2

- Genomic Analyses
- Conclusions

Background: Origin and Isolation

- ► Genus Dehalogenimonas
 - ► D. lykanthroporepellens (Moe et al., 2009)
 - D. alkenigignens (Bowman et al., 2013)
 - ► D. formicexedens (Key et al., 2017)
- Both species isolated from Superfund Site in South Louisiana
 - ► Waste disposal from 1969 to 1980
 - Contaminants include
 - ► 1,2-DCA, 1,2-DCP, 1,1,2,2-TeCA, 1,1,2-TCA, VC

Isolation approach

- Anaerobic, cysteine- and titanium-citrate reduced medium
- 1,1,2-TCA or 1,2-DCP as electron acceptor
- H₂ (10%, v/v) in gas headspace
- Ampicillin and vancomycin

Phylogenetic relationship based on 16S rRNA genes

Qiao et al. (2018), Environmental Science & Technology, 52(22):13391-13398

Dehalorespiration

Dehalogenimonas spp. dihaloelimination reactions

Electron acceptors for *Dehalogenimonas**

- Vicinally halogenated alkanes
 - 1,2-Dichloroethane
 - 1,2-Dichloropropane
 - 1,1,2,2-Tetrachloroethane
 - 1,1,2-Trichloroethane
 - 1,2,3-Trichloropropane
- Other chlorinated alkanes
 - 1-Chloropropane
 - 2-Chloropropane
 - 1,1-Dichloroethane
 - 1,1,1-Trichloroethane

Chloromethanes

- Dichloromethane
- Trichloromethane
- Tetrachloromethane
- Chlorinated alkenes
 - Tetrachloroethene
 - Trichloroethene
 - cis-1,2-Dichloroethene
 - trans-1,2-Dichloroethene
 - Vinyl chloride
- Chlorinated benzenes
 - 1-Chlorobenzene
 - 1,2-Dichlorobenzene

D. formicexedens NSZ-14^T grown on 1,2-DCA

Alternative Electron Donor Utilization Experiment: Screening

- Three Dehalogenimonas isolates in triplicate amended with 0.5 mM 1,2-DCP and oversupplied electron donor (5 mM)
 - Negative controls (uninoculated)
 - Positive controls (H₂ in headspace)
- Alternative electron donors/substrates evaluated:
 - Citrate, formate*, methyl ethyl ketone, propionate, pyruvate, starch, succinate, and yeast extract

Analytical

GC for parent/daughter compound analysis

Alternative Electron Donor Utilization Experiment: Formate

- Three Dehalogenimonas isolates in triplicate amended with 0.5 mM 1,2-DCP and formate as electron donor (1.0 mM)
 - Negative controls (uninoculated)
 - Positive controls (H₂ in headspace)
- Analytical
 - ► GC for parent/daughter compounds
 - ► IC for formate
 - qPCR for enumeration

D. formicexedens NSZ-14^T formate consumption linked to dechlorination

D. alkenigignens IP3-3^T genome

1.85 Mbp genome

29 *rdhA* genes (27 "full length")

Single scaffold (2 contigs) assembled based on 3 libraries (454, Illumina, and 8 Kb PE)

GenBank: KQ758903 Key *et al*. (2016) *SIGS*. Most lack cognate *rdhB* genes

Closest RdhA matches in GenBank based on PSIBLAST are from *Dhg, Dhc,* and uncultured bacteria

D. formicexedens NSZ-14^T genome

2.09 Mbp genome

25 *rdhA* genes (23 "full length")

8 *rdhB* genes (1 or 2 orphans)

> GenBank: CP018258 Key *et al*. (2017) *IJSEM*.

Multi-protein reductive dehalogenase complex in *Dehalococcoides mccartyi* CBDB1

Genes annotated as encoding formate dehydrogenases (aligned starting at pos 189 in Dform_00419)

Strain NSZ-14^T (Dform_00419, 1,069 aa)QARLUHSSTVASLAESFGD. lykanthroporepellens BL-DC-9^T (BK009976, 1,027 aa)QARLUHSSTVASLAESFGD. alkenigignens IP3-3^T (DEALK_19115, 1,029 aa)QARLUHSSTVASLAESFG^aDehalococcoides mccartyi 195^T (DET0187, 993 aa)QARLSTASSLEALAASFGDesulfomonile tiedjei DSM 6799^T (Desti_2315, 1,010aa) QARLUHSATVAALAESFG

U=selenocysteine **S**=serine

^aDehalococcoides mccartyi strains identical in the comparison region shown: 11a (CY91_04325), 11a5 (Dm11a5_0194), BAV1 (DehaBAV1_0165),BTF08 (btf_128), CBDB1(cbdbA195), CG4 (X793_00865), CG5 (X794_00795), DCMB5 (dcmb_1591), GT (DehalGT_0247), IBARAKI (IBK_0232), MB (DA01_02820), and SG1 (WP_034376812)

Formate as electron donor

Formate as electron donor

17

Formate utilization during 1,2-DCP dechlorination

Conclusions

- There is considerable phylogenetic diversity among reductively dehalogenating members of phylum Chloroflexi
- Dehalogenimonas spp. can use H₂ and formate as electron donors for dechlorination
- Field scale tests area needed to further evaluate practical use of formate as a biostimulation amendment (source zones?)
- There is much more work to do regarding functional characterization of genes

Acknowledgements

- Other contributors
 - ► K.S. Bowman
 - F.A. Rainey
 - ► Y. Xiao
 - ► W. Lorenz
 - ▶ I. Lee, J. Chun, Y.-J. Cho
 - M.S. da Costa, M.F. Nobre, L. Albuquerque

- Funding / Support
 - Consortium of petrochemical companies
 - ► NSF
 - LA GBI

Questions?