Battelle

2019 Bioremediation Symposium | April 15-18 | Baltimore, Maryland

In situ Biodegradation Rates in Contaminated Sediments via a Novel High Resolution Isotopic Approach: A Field and Modeling Study

Mahsa Shayan^{1,5}, Tetyana Gilevska¹, Elodie Passeport^{2,3}, Edward Seger⁴, Edward J. Lutz⁴, Kathryn A. West⁵, Scott A. Morgan⁵, E. Erin Mack⁶, Barbara Sherwood Lollar¹

1 Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada, 2 Department of Civil Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada 3Department of Chemical Engineering and Applied Chemistry, Toronto, Ontario M5S 3E5, Canada, 4 The Chemours Company, Wilmington, Delaware 19810, USA, 5 AECOM, Deepwater, New Jersey 08023, USA,

6 Dupont, Wilmington, Delaware 19805, USA

April 17, 2019

Outline

- -Site Conditions
- Problem Statement
- -Approach
- -Results and Discussion

01

Introduction

- Site Conditions
- Problem Statement

Site Map

Conceptual Site Model

Compounds of Concern

Degradation pathway of chlorinated benzenes under anaerobic conditions

Monitored natural recovery (MNR) is desired remedial approach for sediment impacted by constituents of concern.

Regulator team requires evidence of:

- 1. Protective bioactive zone;
- 2. Demonstrative attenuation of site constituents in sediments;
- 3. Time to fall below sediment quality benchmarks throughout sediment column (i.e., biodegradation rates)

Challenges

- Provide evidence that biodegradation occurring at rate sufficiently protective to environment and human health
- Provide evidence that benzene degradation is faster than its production by MCB degradation (required to achieve reasonable risk assessment)
- Conventional methods based on concentration analysis alone is insufficient to differentiate between degradative and non-degradative attenuation processes (i.e., overestimation of degradation rates)

Approach

Novel Approach

- High resolution pore water sampling using modified passive diffusion samplers (peepers) across the sediment-water interface, coupled with measurements of concentrations and stable carbon isotope, in order to:
 - Investigate MCB and benzene In Situ biodegradation
 - Estimate biodegradation rates of MCB and Benzene
 - Compare degradation rates derived from CSIA with those derived from concentration-based reactive transport modeling
 - Apply the REV approach for CSIA to identify zones of maximum biodegradation potential

Modified Peeper

- Approximately 1-3 foot (0.3 m- 1 m) long
- Holds 22-40ml VOA vials
- Polysulfone membranes for CSIA sampling
- Hand driven insertion
 and removal
- At least 30-day soak time

E.Passeport et al./ Environ. Sci. Technol. 2014, 48,16, 9582-9590 E.Passeport et al./ Environ. Sci. Technol. 2016, 50, 12197-12204

Three Deployments

Evaluation 2015 MNR Investigation 1-ft Peepers + Bulk Sediment + Surface Water + Sedimentation Rates 2016 MNR Investigation 7 1-ft peepers, 3 2-ft peepers, 1 3-ft

peeper

2011 CSIA

E.Passeport et al./ Environ. Sci. Technol. 2016, 50, 12197-12204 T. Gilevska et al. / Water Research 149 (2019) 632-639

Deep Peepers

Field deployment

- Sampling July 2016
- 4 locations: 60 and 90 cm peepers

Analytical Measurement

- Redox species
- Chloride
- MCB and Benzene
- CSIA

T. Gilevska et al. / Water Research 149 (2019) 632–639

Compound Specific Isotopic Analysis (CSIA)

Representative Elemental Volume (REV)

Statistical evaluation of variations in carbon isotope signatures applying the concept of REV:

> Identify the most biologically active zones

Allow better predictability of the time required for MNR

Representative elemental volume –appropriate scale of measurement at which a continuum is reached i.e. for which any given measurement is representative of the "whole".

AECOM

Application of REV Approach for CSIA

- The propagated error on the degradation rates accounted for δ¹³C measurement reproducibility (0.3‰), the uncertainty in the reported enrichment factor (0.2‰) and uncertainty in calculated seepage velocity (7%).
- When difference between degradation rates calculated based on two successive points (3 cm apart) < propagated error: values considered to be representative of same REV zone
- REV zones identified and tested for significant differences by statistical analysis (p <0.05, Kruskall Wallis Post hoc Dunn test).
- Degradation rates for each REV calculated by using isotope values of first and last points of each REV zone.

Stable Isotope-derived Rate Calculations

ε: MCB enrichment factor (known)

 $\delta^{13}C_1$ and $\delta^{13}C_2$: isotope delta values at two different points along the vertical profile for each peeper location, and

T: average travel time (in years) calculated based on the seepage velocity and distance between the sampling ports

A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA)

Hunkeler et al., 2008

Concentration-derived Rate Calculations

- 1-D reactive transport modelling using MODFLOW and MT3DMS/RT3D
- Non-degradative and degradative processes (i.e., advection, dispersion, diffusion, sorption, and sequential degradation of MCB and benzene)
- Model validity first verified by comparing numerical model outputs with Analytical Model (Lampert and Reible, 2009)
- Model parameters adopted from existing literature (Passeport et al., 2016)
- Chloride concentrations used to estimate seepage pore velocities
- First-order degradation rate constants derived from fitting model outputs to observed concentrations

AECON

Results

Redox Condition

- Sulfate reducing/ methanogenic conditions at the sediment-water interface
- Iron reducing conditions across the sediment profile below 3 cm.

Sulfate

Nitrate

Total dissolved iron

 Favorable for microbial degradation of both MCB and benzene via anaerobic pathways

T. Gilevska et al. / Water Research 149 (2019) 632-639

Quantification of Seepage Velocity via Chloride Profile Simulation

- Chloride was used as conservative tracer to derive seepage velocity estimates
- Calculated upward seepage velocities: 7.4 cm/yr- 20.6 cm/yr

T. Gilevska et al. / Water Research 149 (2019) 632-639

MCB and benzene concentration and isotope profiles

AECOM

Quantitative Assessment of Biodegradation

Conclusions and Contributions

Summary

- Large isotopic enrichment trends in ¹³C for MCB (1.9-5.7‰), with correlated isotopic depletion in ¹³C for benzene (1.0-7.0‰) expected isotope signatures for source & degradation by-product
- A pronounced ¹³C enrichment trend up to 2.2‰ in uppermost sediments (most biologically active zone for benzene) demonstrated simultaneous benzene degradation & production
- Benzene degraded at faster rate (3.3- 84.0 yr⁻¹) than MCB (0.1-1.4 yr⁻¹ and 0.2-3.2 yr⁻¹, respectively), i.e., MCB degradation did not lead to benzene accumulation & the uppermost sediment acted as a zone naturally protective of the surface environment
- CSIA-derived rates are more conservative & prevent "overestimation" based on conventional modelling of concentration profiles
- The range of degradation rates observed in each location likely due to heterogeneity of sediment structure, microbiological activity & sediment pore water redox chemistry

Field Implication

- Combining peeper sampling w/CSIA is a powerful approach to identify/quantify contaminant natural attenuation across sediment-water interface (SWI).
- ID of zones with maximum biodegradation rates, together w/assessment of non-degradative processes allow better predictability of time required for MNR & informs risk assessments at contaminated sites.
- High resolution data can provide a basis for selection & successful implementation of remediation actions such as biostimulation or bioaugmentation, if required
- Sediment acts as a natural protective zone of the surface environment, therefore dredging to remove such a zone is undesirable and costly

AECON

Contributions

- High resolution passive sampling coupled w/CSIA to identify and quantify natural attenuation across SWI
- CSIA-based calculations combined w/numerical modeling as conservative approach to estimate *In Situ* biodegradation rate constants in sediments
- REV concept application to CSIA data to identify zones w/maximum biodegradation rates

Sediment Monitored Natural Recovery Evidenced by Compound Specific Isotope Analysis and High-Resolution Pore Water Sampling

Elodie Passeport,^{*,†,#,O} Richard Landis,^{‡,V} Georges Lacrampe-Couloume,[†] Edward J. Lutz,[§] E. Erin Mack,^{||} Kathryn West,[⊥] Scott Morgan,[⊥] and Barbara Sherwood Lollar[†]

[†]Department of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
[‡]DuPont Engineering and Technology, Wilmington, Delaware 19803, United States
[§]The Chemours Company, Corporate Remediation Group, Wilmington, Delaware 19899, United States
^{II}DuPont Corporate Remediation Group, Wilmington, Delaware 19803, United States
^{II}AECOM, Deepwater, New Jersey 02907, United States

Supporting Information

References

- AECOM, 2007. Interim Remedial Action Work Plan, October 2007.
- Edwards, E. A., Grbić-Galić, D., 1992. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. Aug 1992, 58 (8) 2663-2666;
- Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice Hall, Englewood Cliffs, USA..
- Gilevska, T., Passeport, E., Shayan, M., Seger, E., Lutz, E.J., West, K. A., Morgan, S. A., Mack, E.E., Sherwood Lollar, B., 2019. Determination of in situ biodegradation rates via a novel high resolution isotopic approach in contaminated sediments, Water Research, Volume 149, 2019, Pages 632-639
- Hunkeler, D., Meckenstock, R.U., Sherwood Lollar, B., Schmidt, T.C., Wilson, J.T., 2008. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants Using Compound Specific Isotope Analysis (CSIA). USEPA Publ. 600/R-08/148, pp. 1-82.
- Lampert, D.J., Reible, D., 2009. An analytical modeling approach for evaluation of capping of contaminated sediments. Soil Sediment Contam. 18, 470-488
- Mohn, W. W., Tiedje, J. M., 1992. Microbial reductive dehalogenation. Microbiology and Molecular Biology Reviews, Sep 1992, 56 (3) 482-507
- Passeport, E., Landis, R., Lacrampe-Couloume, G., Lutz, E.J., Mack, E.E., West, K., Morgan, S., Sherwood Lollar, B., 2016. Sediment monitored natural recovery evidenced by compound specific isotope analysis and high-resolution pore water sampling. Environ. Sci. Technol. 50, 12197-12204.
- Passeport, E., Landis, R., Mundle, S.O.C., Chu, K., Mack, E.E., Lutz, E., Sherwood Lollar, B., 2014. Diffusion sampler for compound specific carbon isotope analysis of dissolved hydrocarbon contaminants. Environ. Sci. Technol. 48, 9582-9590.

2019 Bioremediation Symposium | April 15-18 | Baltimore, Maryland

Thank You!

T 905-747-7460 E mahsa.shayan@aecom.com