Confirming *in situ* Benzene Biodegradation Under Anaerobic Conditions Using Stable Isotope Probing

Kate Clark, Karen Hebbard, and Dora Taggart Microbial Insights, Inc.

Overview

Anaerobic Benzene Biodegradation

Anaerobic Benzene Degradation

- Anaerobic conditions common, particularly in source area
- Reported under all terminal electron accepting processes
- Degraders likely not ubiquitous
- May be slow with long lag times and/or inhibited by co-contaminants
- A determining factor in the success or failure of MNA

Limited qPCR Assays Available

mi

Stable Isotope Probing

Stable Isotope Probing

- Specially produced "heavy" compounds which are composed of 99+% ¹³C
 - Natural Compounds are 99% ¹²C
 - Same characteristics as original compound
 - Behave similar to the natural compound
- Used as "tracers" to increase our understanding of contaminant fate
 - BTEX, fuel oxygenates, naphthalene, chlorobenzene, 1,4-dioxane

Stable Isotope Probing

Bio-Trap SIP Analysis

¹³C/¹²C Dissolved Inorganic Carbon

Mineralization (C for energy)

¹³C/¹²C of Biomarkers

PLFA DNA RNA Metabolism (C for growth)

Unit of Measure

Amount of $\,^{13}\text{C}$ relative to ^{12}C is expressed by the $\delta^{13}\text{C}$ notation

$$\delta^{13}C[\%_{0}] = \left(\frac{({}^{13}C/{}^{12}C)_{\text{Sample}}}{({}^{13}C/{}^{12}C)_{\text{Standard}}} - 1\right) \cdot 1000$$

The standard is a specific carbon-containing mineral from a specific location: Pee Dee Belemnite (PDB)

Units of δ^{13} C are ‰ or "per mill"

SIP Benzene Dataset

309 samples from 90 different sites

SIP Benzene Dataset

¹³C-Enriched DIC

¹³C-Enriched PLFA

55% (169 of 309) had at least one ¹³Cenriched anaerobic indicator

- Anaerobic Proteobacteria (cy17:0 and cy19:0)
- Firmicutes (Terminally Branched Saturated)
- Anerobic Metal Reducers (Branched Monoenoic)
- Sulfate Reducers/Actinomycetes (Mid-Chain Branched Saturated)

¹³C-Enriched Fatty Acids

Anaerobes

Subset with qPCR Analysis

45 Samples from in situ Microcosm Studies

DIC δ^{13} C by Treatment

Total and ¹³C-Enriched PLFA

mi

Aerobic Proteobacteria Marker - 16:1w7c

Anaerobic Proteobacteria Marker - cy19:0

Sulfate-Reducer Marker - 10me16:0

mi

Conclusions

- Confirmed benzene degradation in 92% of samples
- ¹³C-enriched fatty acids indicative of anaerobes in 55% of samples
- Benzene carboxylase gene less frequently detected
- Analysis of samples with known treatment suggested oxygen addition increased overall biomass and stimulated both aerobic and anaerobic degradation of benzene and its metabolites

Are there any questions?

