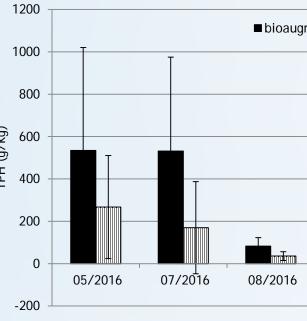
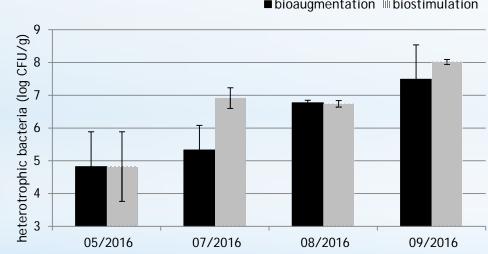
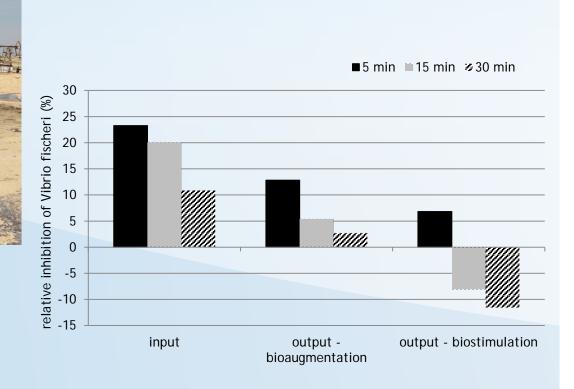


# **Oil Waste Processing Using Combination of Physical Pre-Treatment and Bioremediation - Case Study**


# **Background/Objectives**


Waste emerging from upstream oil industry, usually contains a mixture of contaminated soil, drilling muds and oil in various states of weathering. A massive contamination level of 10% petroleum hydrocarbons, excludes direct processing by bioremediation technology. A new technology for the removal of petroleum hydrocarbons from oil waste was used at the historical oilfield in Kazakhstan. This technology is based on the combination of physical pre-treatment (gravity separation in heavy suspensions), followed by bioremediation.


# **Pilot Scale Test of Bioremediation**

Based on the positive results of lab test, the pilot scale test was suggested:

- $\rightarrow$  Construction of decontamination plate
- $\rightarrow$  Equipment preparation, transport and installation  $\stackrel{\text{\tiny{E}}}{=} 400$ on site
- $\rightarrow$  Soil excavation approx. 150 m<sup>3</sup>
- $\rightarrow$  Test duration 5 months (with monthly monitoring)
- $\rightarrow$  Suggested technology ex-situ biodegradation using bacterial strains for long alkyl chains (bioaugmentation and biostimulation)
- $\rightarrow$  Despite a promising 80% efficiency of the bioremediation, the output concentrations (approx. 6-7g/kg) were still very high and achievement of target limits (2% of TPH) would be costly, even if possible.









# Najmanová Petra <sup>ab</sup>, Raschman Robert <sup>a</sup>

a) DEKONTA, Inc., Prague, Czech Republic (<u>najmanova@dekonta.cz</u>; <u>raschman@dekonta.cz</u>) b) University of Chemistry and Technology, Prague, Czech Republic

### **Pilot Scale Test of Physical Pre-Treatment**

| ntation | ∎bio | stimulatior |
|---------|------|-------------|
|         |      |             |
|         |      |             |
|         |      |             |
|         |      |             |
|         |      |             |
|         |      |             |
|         | F    |             |
| 09/20   | 16   | 10/2016     |
|         |      |             |
|         |      |             |

bioaugmentation biostimulation

### Major limitations / challenges of bioremediation

- $\rightarrow$  Level of contamination: Very high for bioremediation
- $\rightarrow$  Character of material: Extremely heterogeneous
- $\rightarrow$  Character of contamination: Heavy hydrocarbons (over 80%)
- $\rightarrow$  Increased salinity of treated material
- $\rightarrow$  Limited availability of freshwater



### **Technological scheme proposed to** improve treatment efficiency

contamination

- Screening (removal of fine fractions below 5 mm)
- balls")

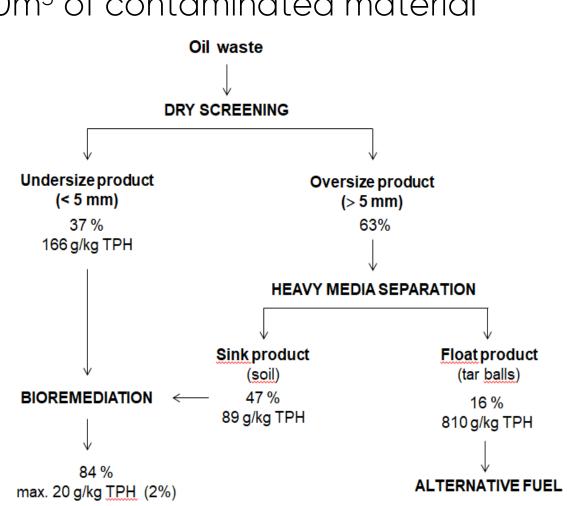
| _ |                     |
|---|---------------------|
|   | Material            |
|   | sand                |
|   | soil                |
|   | drilling cuttings   |
|   | tar                 |
|   | construction debris |

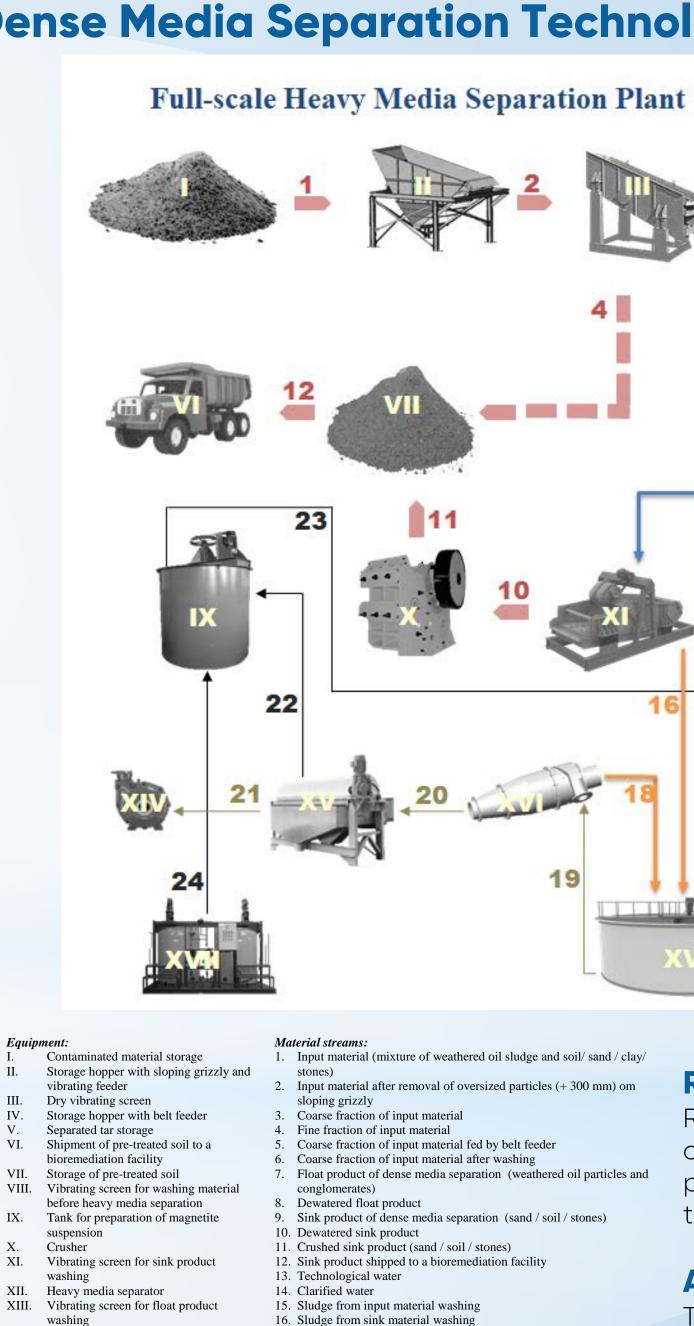
### **Dense Media Separation**

 $\rightarrow$  Dense medium: Solution of sodium silicate (water glass) - specific gravity 1.5 g/cm<sup>3</sup> (specific gravity of tar:  $1.1 \text{ g/cm}^3$ , specific gravity of sand:  $2.7 \text{ g/cm}^3$ )  $\rightarrow$  Performed on-site using 4.4m x 2.3m x 0.9m container; 20m<sup>3</sup> of contaminated material

| Product                   | Yield (% w/w) | TPH content (% w/w) |
|---------------------------|---------------|---------------------|
| Floating part - tar balls | 25            | 81.0                |
| Sinking part – soil       | 75            | 8.9                 |







- Based on separating of highly contaminated
- parts of sludge and soil with lower

### 2. Heavy media separation (removal of "tar

### 3. Bioremediation

|    | Description of a mixture of contaminated                      | Content |
|----|---------------------------------------------------------------|---------|
|    | materials                                                     | (% w/w) |
|    | yellow-brown colour; fine-grained with pebbles; week          | 5       |
|    | hydrocarbon smell                                             |         |
|    | grey colour; fine-grained with pebbles; week to intense       | 30      |
|    | hydrocarbon smell                                             |         |
|    | dark grey to black colour; hard grain size and agglomerates;  | 30      |
|    | intense hydrocarbon smell                                     |         |
|    | black colour; hard grain size, melting at higher temperature; | 30      |
|    | intense hydrocarbon smell                                     |         |
| is | white-grey colour; hard pieces; week hydrocarbon smell        | 5       |
|    |                                                               |         |





- XIV. Pump for delivery of slurry to a
- bioremediation facility XV. Magnetic separator
- XVI. Hydrocyclone XVII. Magnetite storage tank
- XVIII. Sedimentation tank
- XIX. Process water tank

dekonta

- 17. Sludge from float material washing
- 18. Hydrocyclone overflow
- 19. Sediment from a sedimentation tank (input to a hydrocyclon
- 20. Hydrocyclone underflow 21. Sludge after magnetite separation
- 22. Magnetite concentrate
- 23. Heavy suspension ready for use
- 24. Fresh magnetite



### **Dense Media Separation Technology**





# dekonta

### References

Raschman, R., Najmanova, P., 2017. A method of decontamination of soils contaminated with petroleum substances and a line for implementing this method; Patent No. 307139.

### Acknowledgments

This work was supported by Grant No. TE01020218 of the Technology Agency of the Czech Republic, and in part by Grant No. VI20162019017 of the Ministry of the Interior of the Czech Republic



MINISTRY OF THE INTERIOR

