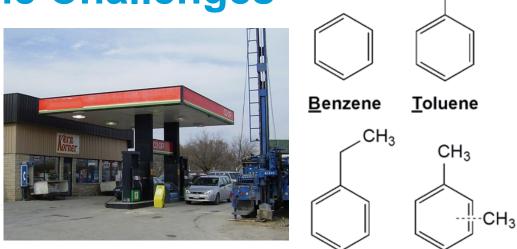
Leading Science · Lasting Solutions

Validation of Anaerobic Benzene Bioaugmentation Approaches Through Bench Scale Treatability Studies

Jennifer Webb, Jeff Roberts , SiREM Elizabeth Edwards, Nancy Bawa, Shen Guo and Courtney Toth - University of Toronto Kris Bradshaw – Federated Co-operatives Ltd.

siremlab.com



Presented by: Sandra Dworatzek, SiREM

April 18, 2019

BTEX/Benzene Challenges

- Retail gas stations, refineries and fuel handling stations among potential sources
- BTEX comprises ~18% of gasoline
 - Benzene is typically around 1%

Benzene:

Potent carcinogen

•/_

Ethylbenzene Xylene(s)

 CH_3

- Particularly mobile in groundwater due to low sorption & high water solubility
- Most difficult BTEX compound to degrade anaerobically (unsubstituted ring structure)
- Under anaerobic conditions, bottleneck to site remediation

Why Go Anaerobic for BTEX?

- Hydrocarbon sites can go anaerobic high organic loading consumes O₂
- Electron acceptors $(NO_3/SO_4/CO_2)$ often already present in subsurface
- Anaerobic electron acceptors soluble, easier to apply/distribute compared to O₂ (e.g., epsom salts (sulfate))
- May be viable in situ remediation option for deep contamination

Genomic Applications Partnership Program (GAPP) Project 2016 -2019

Overview of Project

BTEX Culture Scale Up

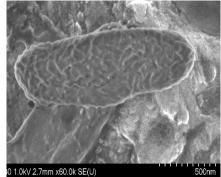
Treatability Testing

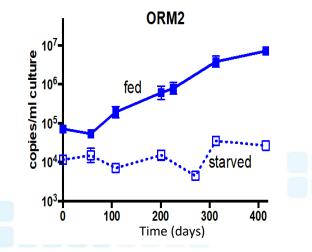
Genomics/ Development of Molecular Tools

Federal NSN Approval *underway *pla

Field Pilot Application *planning stages

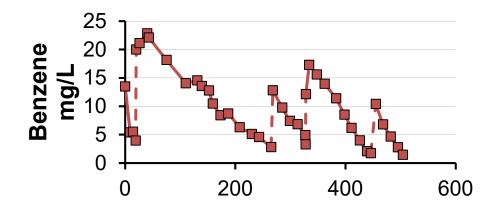
g


GenomeCanada

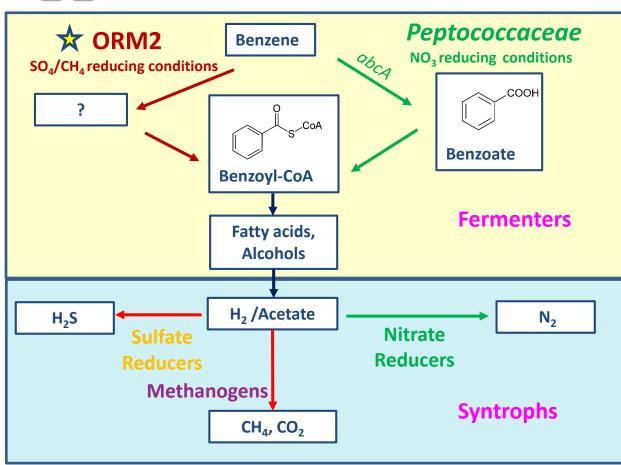


ORM2 Anaerobic Benzene Degrader

- Benzene specialist derived from an oil refinery site in 2003
- ORM2 is a *Deltaproteobacterium*
- Produces enzymes that ferment benzene
- Slower growing ~ 30 day doubling time



DGG-B Culture – ORM2's Home


- DGG-B successfully scaled up to commercial volumes
 - Benzene degradation rate = 0.3 mg /L/ day
 - ▶ 10¹⁰ ORM2/L

Anaerobic BTEX Degradation - a Team Effort

Benzene fermentation is energetically viable only when metabolites (e.g., H₂ and acetate) removed by:

- Methanogens
- Sulfate reducers
- Nitrate reducers

Energy yield lower than aerobic pathways

Treatability Testing Scope

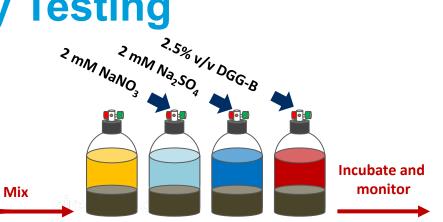
siremlah.com

BTEX-contaminated materials from 10 sites were assessed for their anaerobic benzene bioremediation potential

Tested:

- Intrinsic bioremediation
- Biostimulation (nitrate or sulfate)
- DGG-B bioaugmentation

SiREM

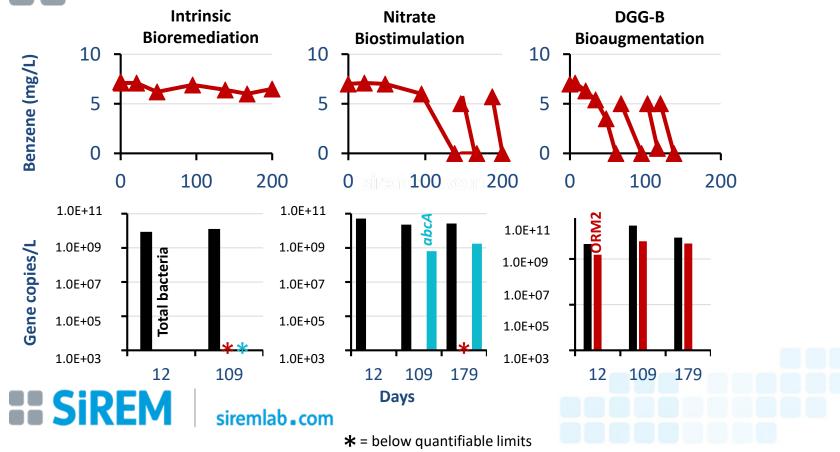

Treatability Testing

Homogenized core samples

Groundwater sample

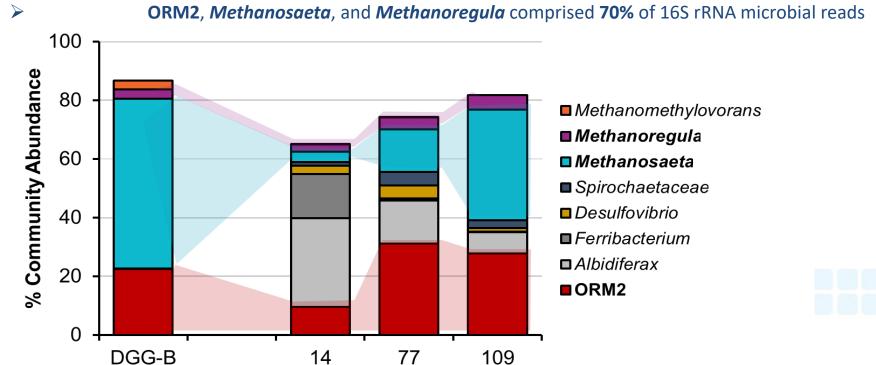
200 mL groundwater slurries 50 mL headspace (10% CO₂ / 90% N₂)

*Aqueous BTEX concentrations ranged between 0.1 – 20 mg/L, depending on site

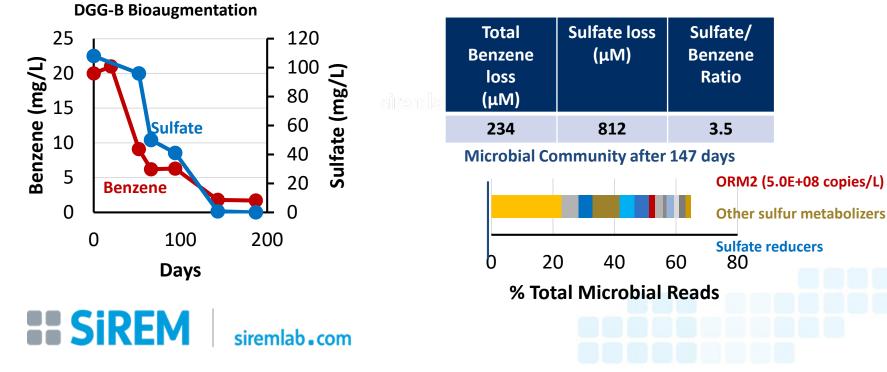


Treatability Study Results

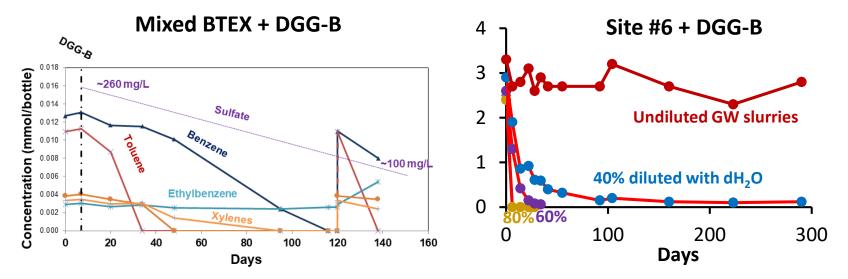
Successful Bioremediation Strategy


Site #	Location			
		Intrinsic Bioremediation	Biostimulation	Bioaugmentation
1	Nanjing, China	\checkmark		\checkmark
2	New Jersey, USA			
3	Ontario, Canada		\checkmark	\checkmark
4	Germany			\checkmark
5	Saskatchewan, Canada	\checkmark		\checkmark
6	Montana, USA			
7	Louisiana, USA*	\checkmark		\checkmark
8	Saskatchewan, Canada*	\checkmark		\checkmark
9	Saskatchewan, Canada*			\checkmark
10	Saskatchewan, Canada*			

Treatability Test Results (Site #3, ON)


Treatability Test Results (Site #3, ON)

• Microbial community sequencing confirms enrichment of key DGG-B microbes postbioaugmentation


Treatability Test Results (Site #7, SK)

- ORM2 can couple benzene degradation to SO₄²⁻ reduction
 - $C_6H_6 + 3.75 \text{ SO}_4^{2-} + 3 H_2O \rightarrow 6HCO_3^{-} + 3.75 \text{ HS}^- + 2.25 \text{ H}^+$

Lessons Learned

- Effective benzene degradation may require pre-treatment of TEX
- Other (unknown) factors can decrease degradation efficiency of DGG-B
 e.g., Other petroleum hydrocarbons, salinity, metals

Conclusions

- Treatability testing indicates $NO_3/SO_4/CO_2$ are suitable electron acceptors
- Indigenous benzene degraders widely detected but at low proportions (<0.01%) and much lower than optimal abundance (10⁷-10⁸/L)

siremlab.com

- Bioaugmentation possibly required even where indigenous benzene degraders present (slow growth rates) - Application volumes may be higher than other cultures
- Benzene degradation in the presence of TEX compounds slower than benzene alone-may need to treat TEX first

Upcoming Work...

- Identification of enzymatic pathways for benzene fermentation in ORM2
 => improved molecular tools for monitoring anaerobic benzene
- Field applications of ORM2 benzene culture (2019)
- Scale-up of existing TEX cultures to commercial volumes, bench scale testing + development of associated molecular tests

Acknowledgements

Courtney Toth, Fei Luo, Shen Guo, Nancy Bawa, Charlie Chen, Chris Shyi, Johnny Xiao, Elisse Magnuson, Yawen Guo, and Elizabeth A. Edwards

Chemical Engineering and Applied Chemistry, University of Toronto

Jennifer Webb SiREM, Guelph ON

Kris Bradshaw Federated Co-Operatives Ltd, Saskatoon SK

Centre for Applied Bioscience and Bioengineering

Thank you for your Attention! Further Information

Sandra Dworatzek (sdworatzek@siremlab.com)

siremlab.com 1-866-251-1747