In Situ Chemical Oxidation and Bioremediation of Oil Across a Louisiana Beach Profile

Olivia Bramlet (Geosyntec Consultants) John H. Pardue & Vijaikrishnah Elango (Louisiana State University)

Geosyntec consultants

Presentation Outline

✓ Site Description

- ✓ Project Objectives
- ✓ Remediation Approach & Methods
- ✓ Results & Discussion
- ✓ Summary & Next Steps

Fourchon Beach, Louisiana

2010 Deepwater Horizon Shoreline Oiling

Geosyntec[>]

Site Description Breach One

Site Description

Previous Research at Breach One O₂ Biostimulation

Breach 1 Remedial Strategy: Enhance degradation of buried oil through combination of *in situ* chemical oxidation (ISCO) and enhanced aerobic bioremediation with oxygen release compound (ORC)

- Assess efficacy of overcoming intrinsic O₂ demand with chemical oxidation to prepare environment for ORC addition
- Investigate extent of direct degradation via chemical pre-oxidation and determine distribution of residual oil
- Evaluate impact of chemical pre-treatment on groundwater chemistry and subsequent biodegradation; determine alterations to microbial population

(1) Chemical Oxidation with Persulfate

 $Na_2S_2O_8 \leftrightarrow S_2O_8^{2-}$

```
\mathrm{S_2O_8^{2-}+2e-\rightarrow 2SO_4^{2-}}
```

$$S_2O_8^{2-} + 2e \rightarrow SO_4^{2-} + SO_4^{--}$$

$$SO_4^{\bullet} - + OH - \rightarrow SO_4^{2-} + OH^{\bullet}$$

(2) Oxygen Delivery with ORC

- Enhanced aerobic bioremediation of a wide variety of organic contaminants
- Calcium oxy-hydroxide based
 proprietary material
- Controlled release of molecular oxygen
- Low operation and maintenance costs

Geosyntec[>]

consultants

Treatment Phases & Application

Groundwater Monitoring

Sediment Analysis

Polycyclic Aromatic Hydrocarbons (PAHs)				
Naphthalene	Flourene	Phenanthrene	Dibenzothiophene	Chrysene
C1-naphthalene	C1-flourene	C1-phenanthrenes	C1-dibenzothiophenes	C1-chrysene
(C1-N)	(C1-F)	(C1-P)	(C1-D)	(C1-C)
C2-naphthalene	C2-flourene	C2-phenanthrenes	C2-dibenzothiophenes	C2-chrysene
(C2-N)	(C2-F)	(C2-P)	(C2-D)	(C2-C)
C3-naphthalene	C3-flourene	C3-phenanthrenes	C3-dibenzothiophenes	C3-chrysene
(C3-N)	(C3-F	(C3-P)	(C3-D)	(C3-C)
C4-naphthalene (C4-N)		C4-phenanthrenes (C4-P)	C4-dibenzothiophenes (C4-D)	

<i>n-</i> alkanes (ALKs)			
Light	Heavy		
decane (C ₁₀)	docosane (C ₂₂)		
undecane (C ₁₁)	n-tetracosane (C ₂₄)		
dodecane (C ₁₂)	n-hexacosane (C ₂₆)		
tridecane (C ₁₃)	n-octacosane (C ₂₈)		
tetradecane (C ₁₄)	n-tricontane (C ₃₀)		
pentadecane (C ₁₅)	n-dotricontane (C ₃₂)		
hexadecane (C ₁₆)	n-hexatriacontane(C ₃₆)		
heptadecane(C ₁₇)			
octadecane (C ₁₈)			
n-eicosane (C ₂₀)			

Microbial Characterization

- Genomic DNA isolation and extraction of sediment
- PCR amplification of 16S rRNA gene fragments
- Next generation sequencing on MiSeq Illumina Platform
- Sequences aligned to SILVA
 database
- OTU based cluster analysis (97% threshold)

www.illumina.com

Geosyntec[>]

consultants

om de no

POST-P1 Results Groundwater

Geosyntec^D

POST-P1 Results PAH Degradation & Distribution

POST-P1 Results ALK Degradation & Distribution

Geosyntec[>]

<u>POST-P1 Results</u> Microbial Community

POST-P1 Results Microbial Characterization

POST-P1 Results Lefse Analysis

	Abundance (%)					
Identification	Pre-P1		Post-P1			
-	Feb HC	Feb	March	April	May-A	May-B
Alcanivorax	4.1E-01	2.0	10	1.3	7.2E-02	5.1E-01
Desulfosalsimonas	4.0E-02	6.2E-04		1.6E-01	1.4	9.7E-01
Halanaerobium	4.7E-01	5.8E-02	8.0E-02	1.1E-01	2.2	1.4
Halomonadaceae	3.8	2.0	3.9E-01	6.4E-01	6.6E-01	5.2E-01
Halomonas	2.0E-01	3.3E-02	5.0E-03	2.0E-03	6.0E-03	7.1E-03
Idiomarina	1.8	8.9E-01	2.8	2.2	2.1E-01	1.8E-01
Marinobacter	40	33	27	27	11	5.8
Methylohalobius	2.5E-02	9.4E-04	1.0E-02	2.0E-03	2.0	6.3E-01
Porticoccus	1.9E-01	1.2	5.1E-01	1.5E-01	8.0E-03	1.6E-02
Rhodobacteraceae	2.7	3.4	7.5	4.7	1.5	1.4
Sediminimonas	9.5E-02	1.9E-01	1.0	2.0E-03	1.5E-01	2.2E-01
Spirochaeta	5.2E-01	5.5E-01	8.6E-01	2.4E-01	2.5	2.7
Sulfurimonas	5.7	3.3	8.5	3.6E-01	8.9	8.3
Sulfurovum	1.0E-01	7.4E-01	1.8E-01	1.1	2.1E-01	1.7
Thiomicrospira	4.5	1.9	4.8	6.1	8.3	4.6
Thermovirga	2.1	3.3E-02	1.3E-02	1.2E-02	1.6E-01	6.4E-02

POST-P2 Results Groundwater

Geosyntec^D

<u>Results</u> Oxygen Demand Study

Sample	Treatment	O ₂ Demand (mg O ₂ /L-hr)	R ²
Control (C)	Untreated	0.029	0.967
	Treated	0.00037	0.795
	Untreated	0.319	0.965
Groundwater (G)		0.0271	0.939
	Treated	0.00530	0.962

Treatment	Ferrous Iron (mg/L)	Sulfide (mg/L)
Untreated	0.0901 ± 0.02	64.6 ± 0.80
Treated	0.00672 ± 0.01	N.D.

- Oxidation of reduced chemical species represent major oxygen sinks in intrinsically reducing subsurface environments; can affect aerobic bioremediation outcomes
- Chemical oxidation phase decreased concentrations of PAH/ALK and allowed for more efficient addition of applied oxygen to be used in aerobic bioremediation phase
- Perturbation of microbial community after P1 but increase in diversity after 3 months and increased O₂ levels after P2

Next Steps: Determine impact on microbial community post-P2 and monitor aerobic bioremediation phase

Acknowledgements

Funding provided by GOMRI and the Edward J. Wisner Donation

Edward J Wisner Donation, New Orleans, LA

