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Metabolomics

Why Metabolomics? There are two broad classes of

metabolomic experiments:

What the system is
capable of doing

1) Untargeted methods attempt
to identify every component
in the metabolome.

Transcription

What the system is
trying to do 2) Targeted methods detect and

Translation

protein quantitate a set of known
Post -translational compounds.
Modification
Modified _ _ _
proteins The chemical diversity of the
metabolites makes either type of
Enzyme Activity The actual state of - _ yp¢
the system analysis a challenging analytical
Small problem.

Molecules

Rabinowitz, J.D., (2007), Expert Review or Proteomics, 187-198



Information Gained fromn Metabolomics

l ACAT

Systems Level

,;o

Metabolic
Pathways

Individual Enzymes
and Metabolites

Systems: Gross changes in metabolite clusters can be used to fingerprint

conditions.

Pathways: Quantitative changes in a metabolite pathway can be used to
understand the effects of perturbations.

Enzymes: Specific metabolite changes can be correlated to enzymes to study

their function.

Vinayavekhin, N. et al. (2009), ACS Chem. Bio., 91
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Pool Sizes versus Flux

Metabolite Concentrations, or Pool Sizes, are not enough to fully understand
metabolic function.

The rate at which metabolites flow through a pathway, or the Flux, of the systems
Is needed to gain a detailed view of metabolism.

Addition of Stable Isotopes to the media can be used to quantitate Flux.

= < =

With XT at steady state,

dXY/dt = —f (XY XT) mmm Labeled form
= Unlabeled form

Nutrient

Biomass,
input

waste, etc.

The analytical solution is
XYIXT = exp(—f,t/XT)
Setting k= f,/XT, we get
XYIXT = exp(-k,t)

Yuan, J. et al. (2008), Nature Protocols, 1328-1340



Metabolomics at UTK
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The Impact of Viral Lysis on Marine
Microbial Populations

Viral lysis of bacteria causes release of
dissolved organic matter.

Virus-derived organic matter is

important in the recycling of carbon and z

nutrients. o

L

A

- - - - M

Relatively little is known of the 5

biochemical composition of viral lysates 3

Virus activity alters the metabolism of
marine plankton, and this may influence
the composition of organic matter

released into the environment. Wilhelm and Suttle. (1999), BioScience, 199¢

Ankrah, N.Y., May, A.L., Middleton, J.L., et. al.
The ISME Journal 2014, 8(5), 1089-1100



Alterations in Host Metabolism were
Expected

At the onset, we expected that viral infection would lead specific alterations in
host metabolism that would benefit the phage based on work done in model

systems.

Both lysogenic and lytic coliphages initially promote similar alterations in host
that halt host cell DNA synthesis, degrade host DNA, and assemble the
machinery for viral production.

A number of viruses contain auxiliary metabolic genes (AMGs) to overcome rate
limiting steps in host biosynthesis. (Breitbart, M. (2012), Annual Review of
Marine Science, 425)

Host manipulation has been demonstrated in marine cyanophage which encode
and express photosynthesis proteins homologous to those found in their
hosts (Thompson LR, et al., (2011) Proceedings of the National Academy of
Sciences, E757.)

A few marine phage-host systems appear to sequester sufficient resources for
nucleic acid synthesis entirely from degradation of host DNA. (Wikner et al.,
(2006), FEMS Microbiology Ecology, 1574)



Infection Alters the Distribution of Biomass for
Roseobacter 2047 and Lytic Roseophage 2047B

Carbon Estimates
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But does it dramatically alter the concentration and composition of the small
molecule metabolites released as DOM, and what are the effects on cellular
physiology?




Metabolic Alterations Occur During the Lytic Phase of
Infection
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Carbon Flux and Conclusions

BBC-Flux Profiling revealed that the infected cells are very metabolically active during
the lytic portion of the infection.
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Released metabolites also seem to provide
a plentiful supply of N to cells that are not
lysed during infection.



Overview of Quorum Sensing

How do bacteria communicate?

Through small molecules
Why do bacteria communicate?

To protect themselves

To create communities

Many other reasons

What could be gained from understanding
Bacterial Communication?

Methods for Biofilm Control

Discovery of Novel Therapeutics

Bassler, B.L.; Camilli, A., (2006), Science, 113-116



Classes of Infochemical Molecules

A variety of bacterial pheromones have been identified, and
they differ in both structure and function.
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Pheromones are Linked to Metabolism
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Quorum sensing links metabolism to extracellular signaling.

Autoinducer-2 is made during a critical methionine salvage step in the
activated methyl cycle, and species that produce Autoinducer-1 have a
further link to metabolism.



Pheromones an
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Pheromones and Metabolism in Coral
Black Band Disease (BBD)

Black Band Disease In collaboration with the Richardson Lab at FIU, a
three part investigation to understand the 1) AHL
production from disease associated bacteria, 2)
metabolic fluxes in BBD, and 3) the impact of
infochemicals on coral metabolism was performed.

Isolate Source

BBD infected coral L@zl

(BBD) (n=20)

SML from healthy part of

coral(rSEZS)M L) BBD infected coral
(BSML) (n=1)
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30HC6 30HC6 30HC6

30C12

30HCS
30C5:1

[op} o1

30HCS8

(155 bacterial isolates from BBD,
38 were from apparently healthy coral (HSML),
and 36 from the apparently healthy part of BBD infected
coral (BSML) were tested for AHL production.)
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Metabolic Fluxes in Coral Mucous
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Metabolic fluxes of C and N differ for microorganisms in infected coral
mucous, and N recycling from the host coral may promote growth



Pheromones Alter Metabolism in Healthy

Coral Fragment
Metabolomic Data

Experimental Setup:

+500 nM DPD
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