Development and Application of a Rapid, User-Friendly and Inexpensive Method to Detect Dehalococcoides spp. Genes in Groundwater

Yogendra Kanitkar¹, Robert Stedtfeld¹, Syed Hashsham¹, Paul Hatzinger², Alison Cupples¹

¹Michigan State University, ²CB&I Federal Services

May 23, 2017

Introduction

Technical Objective:

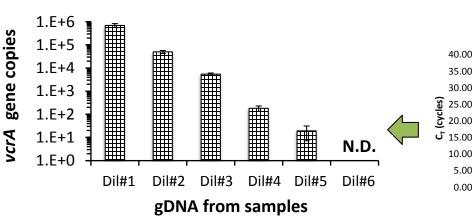
To develop rapid, sensitive and specific methods to quantify *Dehalococcoides* spp. genes from groundwater samples without DNA extraction

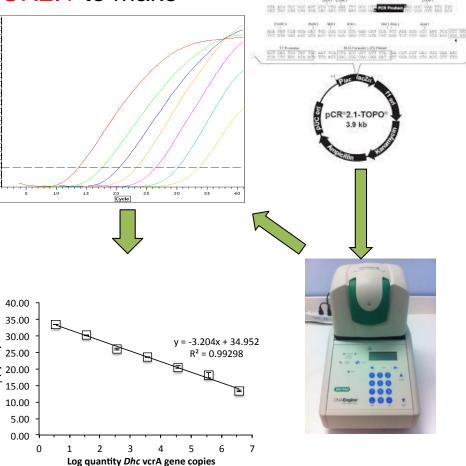
Key Components:

- Use loop mediated isothermal amplification (LAMP) as a technique for molecular detection
- Carry out validation with bioaugmentation cultures & groundwater samples
- ✓ Develop a LAMP based method which is low cost and easy to use
- Explore the development of field deployable approaches

Introduction:

Conventional Detection of RDase Genes

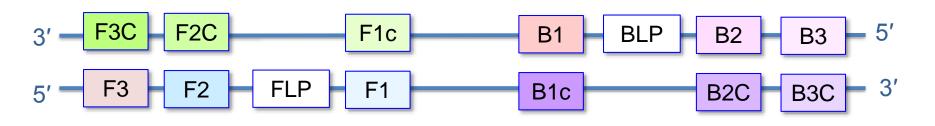

 Typically, quantitative polymerase chain reaction (qPCR) is used for detecting and quantifying 16S rRNA or functional genes


> 0.125 Elinorescence

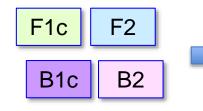
> > 0.075

0.025

- The gene of interest is cloned into pCR2.1 to make
 plasmid standards
- A standard curve with C_T values is plotted
- Environmental DNA is measured using a standard curve


ANT

Introduction:


Loop Mediated Isothermal Amplification (LAMP)

Amplification creates stem loop structures with several inverted repeats of the target & cauliflower like structures with multiple loops

Forward Internal Primer (FIP) Backward Internal Primer (BIP)

B3

having both sense and antisense sequence helps in the formation of a loop

Forward Outer Primer (F3) F3

Backward Outer Primer (B3)

Forward Loop Primer (FLP)FLPBackward Loop Primer (BLP)BLP

Introduction:

Applicability of LAMP for Development of Field Deployable Kits

- Amplification occurs at one temperature (isothermal), thermal cycler may not be needed
- High amplification efficiency, DNA is amplified 10⁹-10¹⁰ times in 15 – 60 min.
- Direct amplification without DNA extraction for water samples
- Less sensitive to substances that inhibit PCR
- Six primers make LAMP highly specific
- Because of these advantages LAMP has been widely applied as a point of care molecular diagnostic tool for detection of a variety of templates

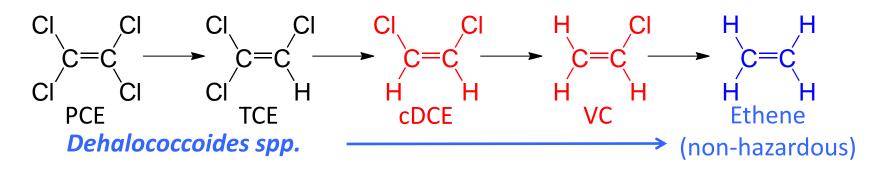
Step 1: Biomass Extraction

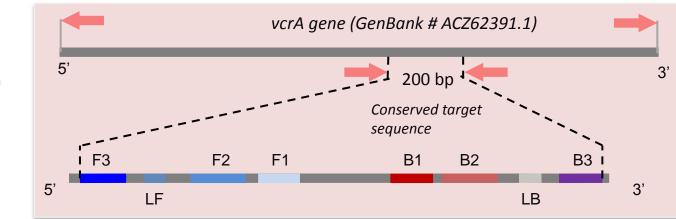
Direct cell extractions from groundwater

Step 2: Detection of template

Visual detection with dsDNA binding dyes

Detection on real time thermal cyclers


Detection on proprietary microfluidic platforms e.g. Gene-Z



LAMP with Rdase genes

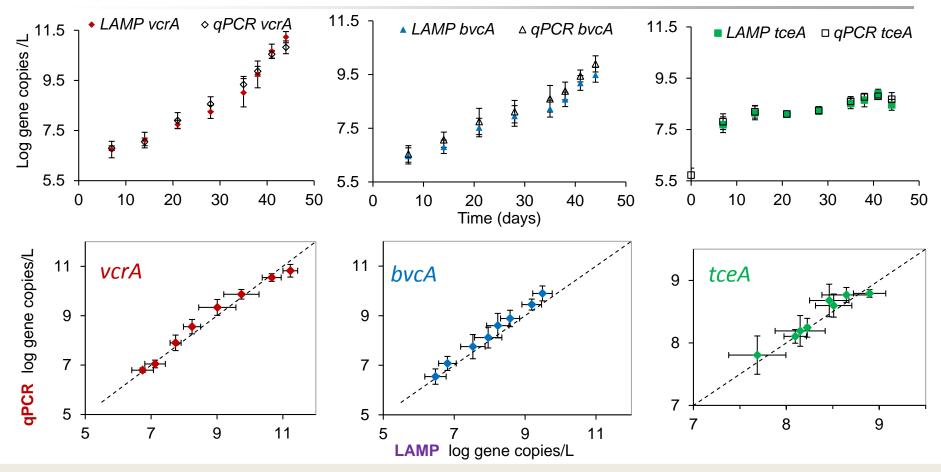
Primer Development

- Survival & activity is typically determined using qPCR targeting 16S rRNA or functional genes (RDase genes)
- Three LAMP primer sets specific to the *tceA*, *vcrA*, and *bvcA* genes were designed using Primer Explorer v4

LAMP primer designing software **PrimerExplorer**

Three Study Questions

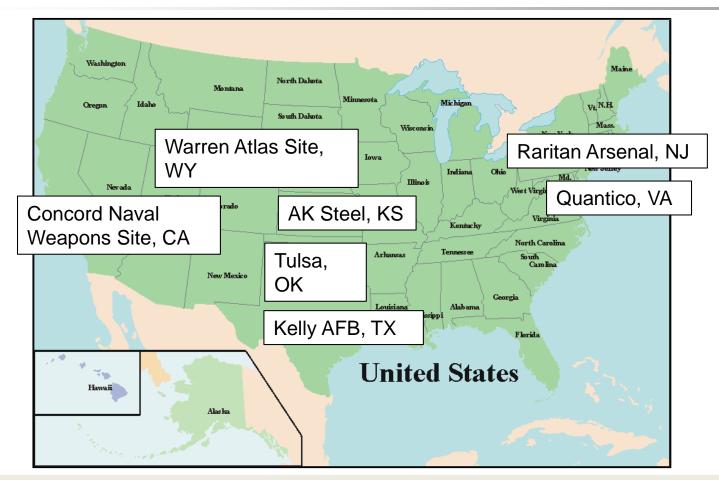
Q1. Is LAMP comparable to qPCR for DNA extracted from cultures or groundwater?


Q2. Is LAMP with Gene-Z comparable to qPCR with a real time thermal cycler?

Q3. How viable are visual based LAMP assays on cell templates (no DNA extraction) for detecting RDase genes?

LAMP with Rdase genes

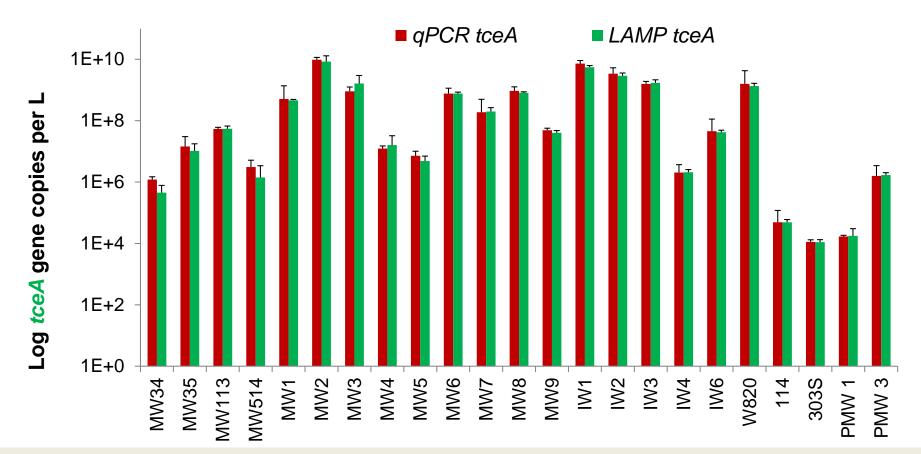
Comparing LAMP to qPCR with KB-1 DNA templates



- LAMP primers were used to track the growth of *Dehalococcoides* spp. over one growth cycle of KB-1
- Quantification with LAMP was comparable to qPCR
- Similar results were observed with SDC-9

LAMP with Rdase genes

Comparing LAMP to qPCR with groundwater templates

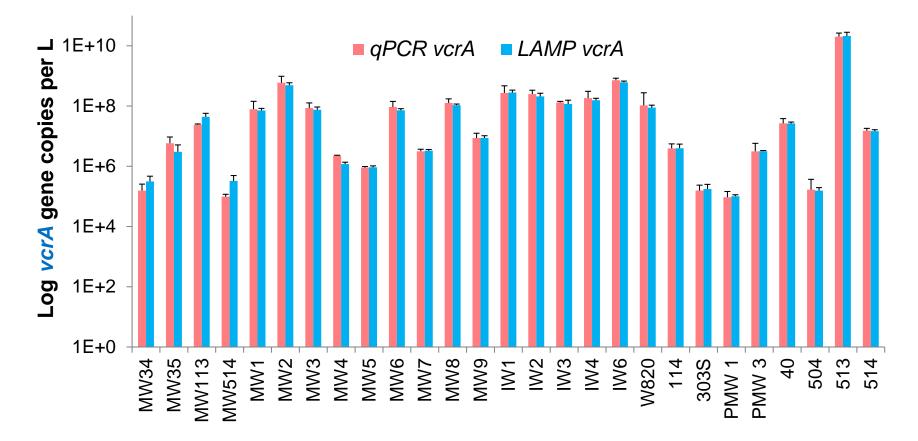


- 27 groundwater samples from 7 sites were shipped to Michigan State University for analysis
- DNA extracts from groundwater samples were used as templates for comparing LAMP to qPCR

AST

LAMP with RDase genes

Comparing LAMP to qPCR with groundwater templates (tceA)

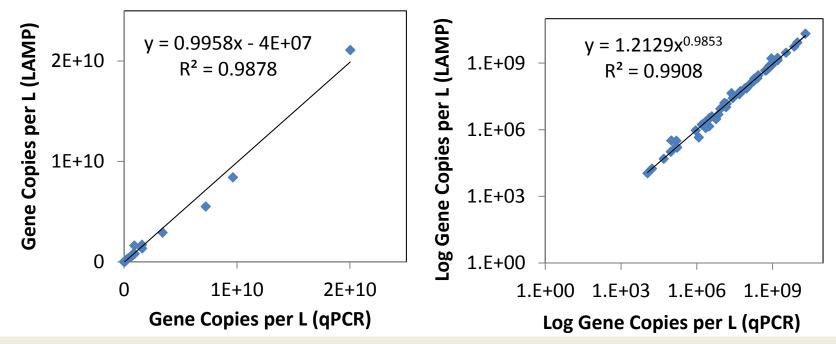


- qPCR & LAMP produced similar results for *tceA*
 - ✓ Similar results for different groundwater samples
 - ✓ Similar results over a range of concentrations
 - ✓ Replication was good between triplicate samples

ANT

LAMP with RDase genes

Comparing LAMP to qPCR with groundwater templates (vcrA)


- qPCR & LAMP produced similar results for vcrA
 - ✓ Similar results for different groundwater samples
 - ✓ Similar results over a range of concentrations
 - Replication was good between triplicate samples

LAMP with RDase genes

Summary - DNA from Groundwater qPCR compared to LAMP

LAMP vs. qPCR (tceA & vcrA)LAMP vs. qPCR (tceA & vcrA)Arithmetic ScaleLog Scale

- qPCR & LAMP produced similar results for DNA extracted from cultures and from SDC-9 bioaugmented groundwater
- Quantification with LAMP was comparable to qPCR over a wide range of concentrations for *tceA* and *vcrA* genes when DNA was used as templates

Three Study Questions

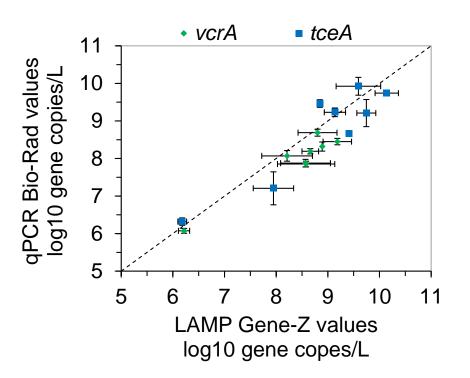
Q1. Is LAMP comparable to qPCR for DNA extracted from cultures or groundwater?

Q2. Is LAMP with Gene-Z comparable to qPCR with a real time thermal cycler?

Q3. How viable are visual based LAMP assays on cell templates (no DNA extraction) for detecting RDase genes?

Gene-Z Analyzer

- Gene-Z is an inexpensive handheld device developed by Dr. Hashsham's group for the parallel detection of pathogens
- It offers quantitative isothermal amplification based on LAMP and is operated using an iPod Touch
- Multiple LAMP assays can be performed on a microfluidic chip (made in house)
- The chip is loaded using a one step process for dispensing the sample
- Analysis of the sample usually takes less than two hours



Quantification in SDC-9 bioaugmented groundwater with LAMP

- DNA extracts from groundwater samples were used as templates to compare qPCR based quantification to quantification on the Gene-Z
- Quantification with LAMP Gene-Z was comparable to that of qPCR over a wide concentration range for both *tceA* and *vcrA* genes

Kanitkar, Y. H.; Stedtfeld, R. D.; Steffan, R. J.; Hashsham, S. A.; Cupples, A. M., Development of loop mediated isothermal amplification (LAMP) for rapid detection and quantification of *Dehalococcoides* spp. biomarker genes in commercial reductive dechlorinating cultures KB-1 and SDC-9. *Applied and Environmental Microbiology* **2016**, *82:1799-1806*

Study Questions

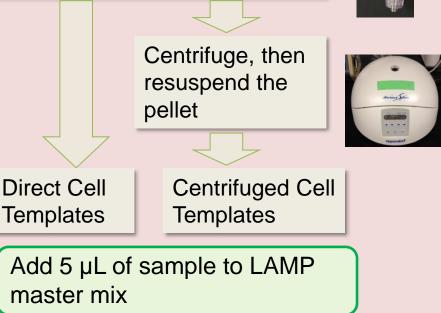
Is LAMP comparable to qPCR for DNA extracted from cultures or groundwater?

Is LAMP with Gene-Z comparable to qPCR with a real time thermal cycler?

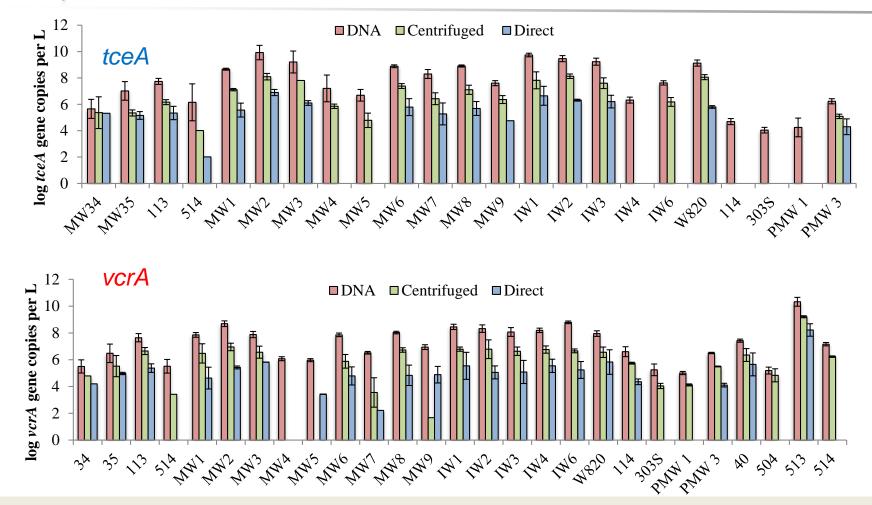
How viable are visual based LAMP assays on cell templates (no DNA extraction) for detecting RDase genes?

LAMP with RDase genes

Direct Cell Amplification on Real Time Thermal Cyclers

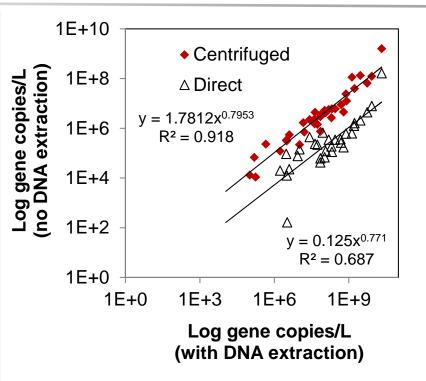

- Direct cell amplification is the addition of cells without DNA extraction to the LAMP reaction as a template for amplification
- It is very similar to colony PCR performed during M13 screen test
- Direct cell templates are often used with LAMP for rapid point of care diagnostics in human and veterinary medicine
- Direct cell and centrifuged cell templates were prepared from SDC-9 bio augmented groundwater and used to test LAMP

Creation of Direct and Centrifuged Cell Templates from Groundwater


Groundwater pre-filtered (5 µm), then passed through Sterivex filter

Add elution buffer (1000 µL), vortex to remove cells

LAMP with RDase genes Direct Cell Amplification on Real Time Thermal Cyclers

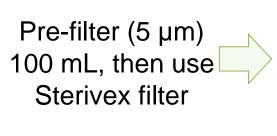


- Quantification with DNA templates > Centrifuged cell templates > Direct cell templates
- This trend was observed to be similar with both tceA and vcrA genes

LAMP with RDase genes Summary - Amplification with Direct Cell Templates

- When biomass concentrations are increased using centrifugation, the observed gene copy/L concentrations also increase
- This suggests that observed gene copy/L concentrations are a function of eluted biomass concentration
- Quantification with centrifuged cell templates was more faithful to quantification with DNA templates

- Centrifuged cell templates had about half the gene copy concentration of DNA templates
- Direct cell templates had ~ 1/10 gene copy concentration of DNA templates


Alternate Platforms for Detection SYBR Green LAMP assay

Orange: Control

Three Green: >1.8 X

10⁵ vcrA per L

Add SYBR

Green

Elution buffer (1000 µL), then vortex & remove cell

Centrifuge, then resuspend pellet

Add 5 µL of sample to LAMP master mix, and then move to water bath (1 hr, 63°C)

Kanitkar Y.H., Stedtfeld R.D., Hatzinger P., Hashsham S.A., Cupples A.M. (In press). Development and application of a rapid, user-friendly and inexpensive method to detect *Dehalococcoides* spp. reductive dehalogenase genes from groundwater. Applied Microbiology and Biotechnology

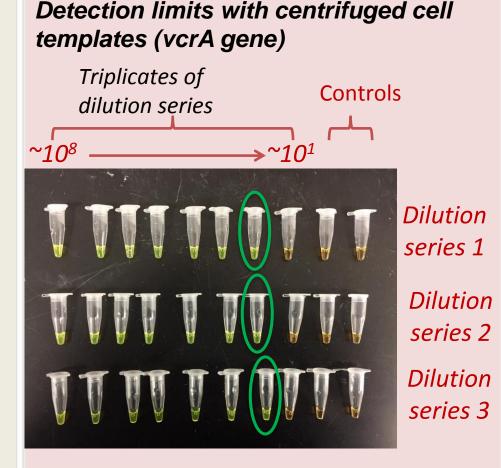
Detection Limits of SYBR Green LAMP Assay

- Detection limits of the SYBR Green LAMP assay when plasmid DNA is used as a template were evaluated
- A five fold 10X dilution series of tceA, vcrA, and bvcA genes were used as templates
- SYBR Green LAMP assay was able to detect ~100 vcrA gene copies per reaction when plasmid DNA was used as a template for amplification
- Similar results were observed for tceA and bvcA genes

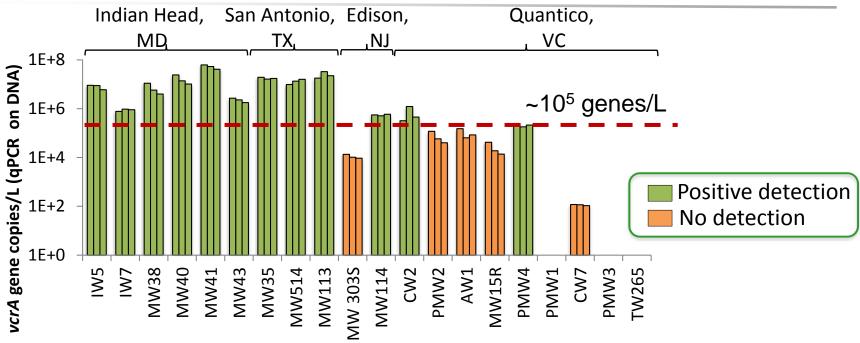
Detection limits with plasmid DNA (vcrA gene)

Controls Triplicates of a dilution series

Dilution series 1


Dilution series 2

Dilution series 3


Detection Limits with Direct Amplification

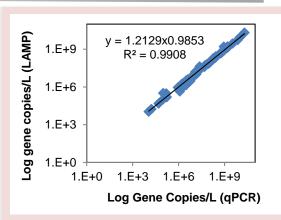
- Detection limits of the SYBR Green LAMP assay were evaluated with centrifuged cells prepared from diluted SDC-9 culture
- An eight fold 10X dilution series was containing ~8.4 x 10⁷ gene copies to ~8 gene copies were used as templates
- SYBR Green LAMP assay was able to detect ~84 vcrA gene copies per reaction when centrifuged cells were used as a templates for amplification
- Similar results were observed for the *tceA* gene

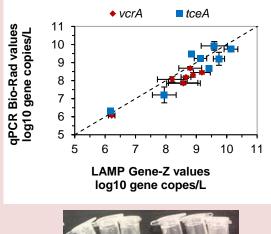
Visual Detection of Centrifuged Cell Templates (Groundwater)

- SYBR Green LAMP assay were evaluated with centrifuged cells prepared from groundwater samples from 4 different sites.
- LAMP assay detected vcrA gene above ~10⁵ genes/L
- >10⁶ gene copies/L required for efficient dechlorination*

If all three replicates remain orange, bioaugmentation or biostimulation may be necessary

*Lebrón, C. A., E. Petrovskis, F. Löffler & K. Henn, Jan 2011, Guidance Protocol, ER-0518


Kanitkar, Y. H., Stedtfeld, R. D., Hatzinger. P. B., Hashsham, S. A., and A. M. Cupples. *In Press.* Development and application of a rapid, user-friendly and inexpensive method to detect *Dehalococcoides* sp. reductive dehalogenase genes from groundwater. *Applied Microbiology & Biotechnology.*


A

Conclusions

Lessons Learned and Current Research

- LAMP and qPCR produced similar results when DNA templates were used.
- This suggests that LAMP can be used to track the growth of *Dehalococcoides* spp. in cultures and groundwater
- LAMP in Gene Z produced similar results as qPCR in a thermal cycler
- This suggests that LAMP can be performed on alternative platforms and may not necessarily require real time thermal cyclers
- Visual based LAMP assay has the potential for field deployment
- Current research focuses on making the LAMP based assay quantitative (MPN)

Acknowledgements

Funding:

Strategic Environmental Research and Development Program Project ER- 2309 (Contract W912HQ-13-C-0071)

I would like to thank

- Tiffany Stedtfeld, Yanlyang Pan from Michigan State University
- Simon Vainberg, Sheryl Streger, Robert E. Mayer, Michael Martinez, and David Lippincott from CB&I Federal Services for supplying groundwater samples and SDC-9 culture
- Phil Dennis from SiREM for supplying KB-1 culture
- Frank Löffler from University of Tennessee at Knoxville for providing the tceA plasmid standard