Presented to Fourth International Symposium on **Bioremediation and** Sustainable Environmental **Technologies** Miami, Florida

Characterization of MTBE Biodegradation **Using Multiple Lines of Evidence:** Equilibrium Partitioning, CSIA, and Microbial Analysis

May 24, 2017

By: David Collins, P.E. & Nicole Longinotti, P.G.

MTBE Biodegradation Study Agenda

1. Project Background 2. Study Objectives 3. Field Work 4. Results - TBA/MTBE Ratios - Equilibrium Partitioning - TEAPs - CSIA - Microbial Analysis **5.** Conclusions 6. Questions

Project Background

- Release occurred over 20 years ago
- Gasoline-range petroleum hydrocarbons and pure phase MTBE
- Current remedies include downgradient hydraulic control and mid-plume pump and treat
- Enhanced bioremediation and MNA are critical remedial action components

Study Objectives

The following objectives were evaluated for the representative areas of the site:

- Evaluate the presence of TBA as a product of dissolution or MTBE transformation
- Identify the terminal electron accepting processes and dominant degradation pathways
- Characterize the microbial community, including confirming the presence and quantifying the number of potential MTBE degraders
- Estimate the rate and extent of MTBE degradation and evaluate the effects of varying MTBE concentrations on degradation

Historical Data and Equilibrium Partitioning

¹³C-labelled MTBE loaded into Bio-Trap ¹³C-labelled MTBE loaded structure

Compound Specific Isotope Analysis

Microbial Analysis

Field Work

- Soil sampling
 - 3 borings, 2 depths in each boring
 - Analyzed for:
 - VOCs
 - Microbial analysis (PLFAs, qPCR)
- Groundwater sampling
 - 15 wells sampled
 - Analyzed for:
 - VOCs
 - Geochemical parameters
 - CSIA
- Microbial Insights Bio-Traps®
 - Deployed in 5 wells
 - Analyzed for:
 - PLFAs
 - qPCR
 - SIP

Increasing TBA/MTBE ratios are an indicator of biodegradation

Comparison of historical data against equilibrium partitioning curves

Terminal electron accepting processes: ORP and DO

Energy available in TEAPs: $O_2 > NO_3^- > Mn(IV)$ oxide > Fe(III) oxide > SO_4^- > CH_4

5.0 4.5 4.0 3.5 3.0 DO (mg/L) 2.5 Oxic 2.0 1.5 1.0 0.5 Anoxic 0.0 1.E-02 1.E+00 1.E+02 1.E+04 1.E+06 MTBE (µg/L)

DO

- > Plume core reduced
- Mildly oxidizing to reducing conditions in plume core fringe and downgradient areas

- Anoxic conditions in plume core and fringe
- Trending more oxic in downgradient areas

TEAPs: conditions become more methanogenic as concentrations increase

CSIA indicates anaerobic degradation is dominant pathway

Source: Kuder, T. et al., Environmental Science and Technology, 39: 213-220, 2005

2-D CSIA Plot of $\delta^{13}\text{C}$ vs $\delta^{2}\text{H}$

Microbial Analysis: PLFA Analysis

Total Biomass

Soil Sample Results:

Microbial Community Structure

- Legend Total Biomass Eukaryotes (polyenoics) General (Nsats) SRB/Actinomycetes (MidBrSats) Anaerobic Metal Reducers (BrMonos) Proteobacteria (Monos) Firmicutes (TerBrSats)
- Moderate levels of biomass
- More diverse microbial community in soil
- Presence of anaerobes and hydrocarbon degraders

Bio-Trap Sample Results:

Microbial Analysis: qPCR Analysis

Legend	Acronyms
ETHB	ETHB – ETBE monooxygenase HCMB – HIBA Mutase PM1 – Methylibium petroleiphilum TBA – TBA monooxygenase
PM1	
- FIVIL	
TBA	
HCMB	

- \succ Genetic material related to MTBE degradation detected
- Higher levels on plume core fringe than plume core

Bio-Trap Sample Results

CSIA: isotopic fractionation increases with distance and as MTBE concentrations decrease

Correlation of CSIA and Equilibrium Partitioning

Microbial Analysis: Stable Isotope Probing Analysis

4 of 5 wells showed:

MW-1A

1.00E+00

Enriched MTBE mass loss

MW-1B

Total Biomass

- > Enrichment in biomass (conversion of MTBE for growth) and DIC (conversion of MTBE for energy)
- Highest levels of enrichment on plume core fringe

MW-1C

13C Enriched Biomass

MW-2

MW-3

MTBE attenuation rates highest at plume core fringe and downgradient areas

- Rate constants in plume core fringe and downgradient wells ranged from 0.0001 to 0.0031 d⁻¹ equivalent to half-life's of 0.6 up to 21 years
- > Attenuation rates highest in plume core fringe and downgradient wells

MTBE Biodegradation Study Conclusions

- Results of the multiple lines of evidence correlated well
- TBA/MTBE ratios, eq partitioning, CSIA, microbial analysis, and MTBE attenuation rates indicated:
 - Biodegradation is occurring on the plume core fringe and in downgradient areas
 - Little to no biodegradation is occurring in the plume core
- CSIA and TEAPs indicated anaerobic degradation is the dominant pathway
- Microbial analysis confirmed the presence and functionality of appropriate degraders across the site
- Suggests manipulation of the plume core to create favorable conditions should stimulate intrinsic microbial activity
- Monitored natural attenuation is viable once plume core concentrations have been addressed

Questions?

Microbial Incight

