



High-Resolution Delineation of Chlorinated Solvent Concentrations, Biogeochemical Processes, and Microbial Communities in Saturated Subsurface Environments

> Haley Schneider Texas Tech University

Battelle Bioremediation Symposium May 24, 2017

# **Problem Statement**



- Contaminant fate and transport prediction limited by intrinsic heterogeneity
- Low permeability zones sustain groundwater plumes



## **Research Objectives**



Overall goal: develop and demonstrate a High Resolution Passive Profiler (HRPP) as a fine-scale delineation tool for the saturated subsurface

- 1. Directly measure groundwater and contaminant flux at the cmscale
- 2. Quantify biogeochemical conditions at the cm-scale
- 3. Assess microbial community structure and activity at the cm-scale



Tested with laboratory experiments and 2 field trials

# **HRPP** Functionality





# Equilibrium Porewater Sampling





- ~3 weeks (tunable)
- Any soluble species

## Estimating Groundwater Velocity





## Microbial Community and Compound Specific Isotope Analysis





#### Field Deployment of HRPP Naval Air Station – Alameda, CA





0

#### **Test HRPP for:**

- Direct push insertion into shallow aquifer (~20 feet below ground surface)
- Delineation of groundwater velocity, VOCs, microbial communities, and CSIA compared to monitoring wells, soil cores, and membrane interface probe (MIP) data

# Field Deployment of HRPP





Preparation



Insertion





### **Comparative Data Sets**





#### P3 and Surrounding Area Naval Air Station – Alameda, CA





#### P4 and Surrounding Area Naval Air Station – Alameda, CA





#### cis-1,2-Dichloroethylene Concentrations & CSIA





PID – photoionization detector ECD – electron capture detector

#### Vinyl Chloride Concentrations & CSIA





PID – photoionization detector ECD – electron capture detector

#### Geochemistry Chloride, Sulfate



# Other possible groundwater constituents: $NO_3^-$ , $NO_2^-$ , $Fe_T$ , $Fe^{+2}$ , DOC



# **Microbial Communities**





## **Groundwater Velocity Estimates**





## Conclusions



## Groundwater velocity can be estimated (~1-100 cm/d)

#### HRPP yields

- Higher resolution contaminant profiles
- Independent of formation hydraulic conductivity

#### **HRPP** capabilities

- Microbial community analysis
- Compound Specific Isotope Analysis

HRPP is structurally adequate for direct-push insertion



High resolution data can independent from well production rates

- Enable better site modeling
- Remediation design
  - Natural attenuation potential
  - Need for bioaugmentation
- Impact of remedial activities
  - Distribution of amendments
  - Bacterial community/capacity
- Determine impact of low permeability zones
  - Potential for rebound
  - Well placement

## **Acknowledgements**





Paul Hatzinger Paul Koster Van Groos

Mark Tucker



#### SERDP ER-2419



W. Andrew Jackson Stephen Morse Danny Reible Henry Yew



# **Questions**?



For additional information, please visit https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-2419

#### **Speaker Contact Information**

haley.a.schneider@ttu.edu

